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Regularity estimates in time and space for solutions to the porous medium equation are shown in the scale
of Sobolev spaces. In addition, higher spatial regularity for powers of the solutions is obtained. Scaling
arguments indicate that these estimates are optimal. In the linear limit, the proven regularity estimates are
consistent with the optimal regularity of the linear case.
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1. Introduction

We prove estimates on the time and space regularity of solutions to porous medium equations�
@tu��u

Œm� D S in .0; T /�Rd ;

u.0/D u0 in Rd ;
(1-1)

where uŒm� WD jujm�1u with m>1, u0 2L1.Rd / and S 2L1..0; T /�Rd /. Solutions to porous medium
equations are known to exhibit nonlinear phenomena like slow diffusion or filling up of holes at finite rate:
If the initial data is compactly supported, then the support of the solution evolves with a free boundary
that has finite speed of propagation. The solution close to the boundary is not smooth even for smooth
initial data and zero forcing.

Despite many works on the problem of regularity of solutions to porous medium equations, until
recently, established regularity results in the literature in terms of Hölder or Sobolev spaces were restricted
to spatial differentiability of order less than 1; see [Ebmeyer 2005; Tadmor and Tao 2007]. For m& 1

this is in stark contrast to the limiting case mD 1, where u is up to twice weakly differentiable in space.
Very recently, the first author has proven optimal spatial regularity for (1-1) in [Gess 2020] for initial data

MSC2010: 35K59, 35B65, 35D30, 76S05.
Keywords: porous medium equation, entropy solutions, kinetic formulation, velocity averaging, regularity results.

2441

http://msp.org/apde/
https://doi.org/10.2140/apde.2020.13-8
http://msp.org


2442 BENJAMIN GESS, JONAS SAUER AND EITAN TADMOR

u0 2 .L
1 \L1C"/.Rd / for some " > 0. This leaves open three main aspects addressed in the present

work: first, the derivation of optimal1 space-time regularity, second, the limit case u0 2 L1.Rd /, which
is of particular importance since it covers the case of the Barenblatt solution for which the estimates are
shown to be optimal, see Section 3 below, and third, higher-order integrability. Solving these three open
problems is the purpose of the present paper.

The first main result provides optimal space-time regularity for L1 data.

Theorem 1.1. Let u0 2 L1.Rd /, S 2 L1..0; T / � Rd / and m 2 .1;1/. Let u be the unique entropy
solution to (1-1) on Œ0; T ��Rd.

(i) Let p 2 .1;m� and define

�t WD
m�p

p

1

m� 1
; �x WD

p� 1

p

2

m� 1
:

Then for all �t 2 Œ0; �t /[f0g and �x 2 Œ0; �x/ we have

u 2W �t ;p.0; T IW �x ;p.Rd //:

Moreover, we have the estimate

kukW �t ;p.0;T IW �x;p.Rd // . ku0kmL1x CkSk
m

L1t;x
C 1: (1-2)

(ii) Suppose O b Rd. Let s 2 Œ0; 1� and define

p WD s.m� 1/C 1; �t WD
1� s

s.m� 1/C 1
; �x WD

2s

s.m� 1/C 1
:

Then for all �t 2 Œ0; �t /[f0g, �x 2 Œ0; �x/[f0g and q 2 Œ1; p� we have

u 2W �t ;q.0; T IW �x ;q.O//:

Moreover, we have the estimate

kukW �t ;q.0;T IW �x;q.O// . ku0kmL1x CkSk
m
L1t;x
C 1: (1-3)

In [Tadmor and Tao 2007; Ebmeyer 2005] initial data in L1 \L1 was considered. However, the
methods employed in these works did not allow a systematic analysis of the order of integrability of the
solutions. For example, the results of [Ebmeyer 2005] are restricted to the particular order of integrability
p D 2=.mC 1/, while [Tadmor and Tao 2007] is restricted to p D 1. In the second main result we
provide a systematic treatment of higher-order integrability. In particular, this includes and generalizes
the corresponding results of [Ebmeyer 2005] in terms of regularity in Sobolev spaces.

Noting that the regularity of uŒm� contains information on the time regularity of u in light of (1-1), in
addition, we analyze the spatial regularity of powers of the solution u� for � 2 Œ1;m�.

Theorem 1.2. Let u0 2L1.Rd /\L�.Rd /, S 2L1.Œ0; T ��Rd /\L�.Œ0; T ��Rd / for some � 2 .1;1/
and assume m 2 .1;1/. Let u be the unique entropy solution to (1-1) on Œ0; T ��Rd.

1Optimality is indicated by scaling arguments in Section 3 below, and the derived estimates are consistent with the optimal
space-time regularity in the linear case mD 1.
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(i) Let � 2 Œ1;m�. Then for all

p 2

�
1;
m� 1C �

�

�
; �x 2

�
0;
�p� 1

p

2

m� 2C �

�
we have

uŒ�� 2 Lp.0; T IW �x ;p.Rd //;

and we have the estimate

kuŒ��kLp.0;T IW �x;p.Rd // . ku0k
��

L1x\L
�
x

CkSk
��

L1t;x\L
�
t;x

C 1: (1-4)

(ii) Let p 2 .�;m� 1C �/ and define

�t WD
m� 1C ��p

p

1

m� 1
; �x WD

p� �

p

2

m� 1
:

Then for all �t 2 Œ0; �t / and �x 2 Œ0; �x/ we have

u 2W �t ;p.0; T IW �x ;p.Rd //:

Moreover, we have the estimate

kukW �t ;p.0;T IW �x;p.Rd // . ku0k
�

L1x\L
�
x

CkSk
�

L1t;x\L
�
t;x

C 1: (1-5)

Much as in Theorem 1.1, if one restricts to estimates that are localized in space, the rigid interdependency
of the coefficients in Theorem 1.2 can be relaxed.

Corollary 1.3. Under the assumptions of Theorem 1.2, suppose O b Rd.

(i) Let � 2 Œ1;m�. Then for all �x 2 Œ0; 2�=m/ and q 2 Œ1;m=�� we have

uŒ�� 2 Lq.0; T IW �x ;q.O//;

and we have the estimate

kuŒ��kLq.0;T IW �x;q.O// . ku0k
��

L1x\L
�
x

CkSk
��

L1t;x\L
�
t;x

C 1: (1-6)

(ii) Let s 2 Œ0; 1� and define

p WD s.m� 1/C 1; �t WD
1� s

s.m� 1/C 1
; �x WD

2s

s.m� 1/C 1
:

Then for all �t 2 Œ0; �t /[f0g, �x 2 Œ0; �x/[f0g and q 2 Œ1; p� we have

u 2W �t ;q.0; T IW �x ;q.O//:

Moreover, we have the estimate

kukW �t ;q.0;T IW �x;q.O// . ku0k
�

L1x\L
�
x

CkSk
�

L1t;x\L
�
t;x

C 1: (1-7)

The methods employed in this work are inspired by [Tadmor and Tao 2007] and rely on the kinetic
form of (1-1), that is, with f .t; x; v/ WD 1v<u.t;x/� 1v<0,

@tf �mjvj
m�1�xf D @vqCS.t; x/ıu.t;x/.v/ (1-8)
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for a nonnegative measure q, which allows the use of averaging lemmas and real interpolation. There is a
relatively short yet intense history of applying such velocity-averaging techniques to deduce regularizing
effects in nonlinear PDEs — from the early works [DiPerna, Lions, and Meyer 1991; Golse, Lions,
Perthame, and Sentis 1988; Lions, Perthame, and Tadmor 1994a; 1994b; 1996] to the more recent
[Arsénio and Masmoudi 2019; DeVore and Petrova 2001; Golse and Perthame 2013; Golse and Saint-
Raymond 2004; Jabin 2009; Jabin and Vega 2004; Perthame 2002]. An essential difference to purely
spatial regularity consists in the necessity to work with anisotropic fractional Sobolev spaces, which only
in their homogeneous form are nicely adapted to the Fourier analytic methods of this work, much in
contrast to the purely spatial case in [Gess 2020]. This leads to the so-called dominating mixed anisotropic
Besov spaces introduced in [Schmeisser and Triebel 1987]. Passing from these homogeneous anisotropic
spaces to standard inhomogeneous fractional Sobolev spaces is delicate and treated in detail below. A
main ingredient in the proof of optimal regularity in [Gess 2020] was the existence of singular momentsR
t;x;v jvj

�
q for 
 2 .0; 1/. This ceases to be true for general L1-initial data. This difficulty is overcome
in the present work by treating separately the degeneracy at jvj D 0 and the singularity at jvj D 1 as
they appear in (1-8). This also necessitates making use of (1-8) in the case of small spatial modes � in
order to obtain optimal time regularity; see Corollary 4.7 below.

Comments on the literature. The (spatial) regularity of solutions to porous medium equations in Sobolev
spaces has previously been considered in [Ebmeyer 2005; Gess 2020; Tadmor and Tao 2007]. Since
our main focus is on time-space regularity, we refer to [Gess 2020] for a more detailed account on the
available literature in this regard.

In the case of nonnegative solutions the spatial regularity of special types of powers of solutions
has been investigated in the literature. For example, much work is devoted to the pressure defined by
v WD .m=.m�1//um�1; see, e.g., [Vázquez 2007]. In the recent work [Gianazza and Schwarzacher 2019]
the authors proved higher integrability for nonnegative, local weak solutions to forced porous medium
equations in the sense that u.mC1/=2 2 L2C"loc ..0; T /IW

1;2C"
loc / for all " > 0 small enough. This result was

generalized in [Bögelein, Duzaar, Korte, and Scheven 2019].
The analysis of regularity in time of solutions to porous medium equations (without forcing) has a

long history initiated in [1979] and continued in [Crandall, Pazy, and Tartar 1979; Bénilan and Crandall
1981], where it was shown that

@tu 2 L
1
loc..0;1/IL

1.Rd // (1-9)

for u02L1.Rd /. Subsequently, Crandall and Pierre [1982a; 1982b] devoted considerable effort to relaxing
the required assumptions on the nonlinearity  in the case of generalized porous medium equations

@tu�� .u/D 0 in .0; T /�Rd : (1-10)

More precisely, in [Crandall and Pierre 1982a] assuming the global generalized homogeneity condition

�
 .r/ 00.r/

. 0.r//2
2 Œm;M� (1-11)

for some 0 < m <M , � 2 f˙1g and all r 2 R, (1-9) was recovered.
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It should be noted that the methods developed in these works are restricted to the nonforced case S � 0.
In fact, for S 6� 0, the linear case mD 1 demonstrates that (1-9) should not be expected. We are not aware
of results proving regularity in time in Sobolev spaces for porous medium equations with nonvanishing
forcing. In this sense, restricting to regularity in time alone, the results of the present work can be
regarded as the (partial) extension of the results of [Aronson and Bénilan 1979; Bénilan and Crandall
1981; Crandall, Pazy, and Tartar 1979; Crandall and Pierre 1982a; 1982b] to nonvanishing forcing.

We are not aware of previous results on mixed time and space regularity in Sobolev spaces for solutions
to porous medium equations.

For simplicity of the presentation we restrict to the nonlinearity  .u/D uŒm� in this work. However,
the methods that we present are not restricted to this case, as long as  satisfies a nonlinearity condition
as in [Gess 2020]. In addition, by means of a velocity decomposition, i.e., writing

u.t; x/D

KX
iD1

ui .t; x/ WD

KX
iD1

Z
v

'i .v/f .t; x; v/ dv;

where 'i, i D 1; : : : ; K, is a smooth decomposition of the unity, such a nonlinearity condition only needs
to be supposed locally at points of degeneracy. This is in contrast to the assumptions, such as (1-11),
supposed in the series of works [Aronson and Bénilan 1979; Bénilan and Crandall 1981; Crandall, Pazy,
and Tartar 1979; Crandall and Pierre 1982a; 1982b] mentioned above, which can be regarded as global
generalized homogeneity conditions.

Structure of this work. In Section 2 we collect information on the class of homogeneous and inhomo-
geneous anisotropic, dominating mixed-derivative spaces employed in this work. The optimality of the
obtained estimates is indicated in Section 3 by scaling arguments and by explicit computations in case of
the Barenblatt solution. In Section 4 we provide general averaging lemmas (Lemmas 4.2 and 4.4) in the
framework of homogeneous dominating mixed-derivative spaces and translate them to more standard
inhomogeneous anisotropic fractional Sobolev spaces (Corollaries 4.5, 4.6 and 4.7). In this formulation,
they imply the main result by their application to the porous medium equation in Section 5.

2. Preliminaries, notation and function spaces

We use the notation a . b if there is a universal constant C > 0 such that a 6 Cb. We introduce
a & b in a similar manner, and write a � b if a . b and a & b. For a Banach space X and I � R we
denote by C.I IX/ the space of bounded and continuous X-valued functions endowed with the norm
kf kC.I IX/ WD supt2I kf .t/kX . If X D R we write C.I /. For k 2 N [ f1g, the space of k-times
continuously differentiable functions is denoted by C k.I IX/. The subspace of C k.I IX/ consisting of
compactly supported functions is denoted by C kc .I IX/. Moreover, we write MTV for the space of all
measures with finite total variation. Throughout this article we use several types of Lp-based function
spaces. For a Banach space X and p 2 Œ1;1�, we endow the Bochner–Lebesgue space Lp.RIX/ with
the usual norm

kf kLp.RIX/ WD

�Z
R

kf .t/k
p
X dt

�1
p

;
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with the standard modification in the case of pD1. For k 2N0 WDN[f0g, the corresponding X -valued
Sobolev space is denoted by W k;p.RIX/. If � 2 .0;1/ is noninteger (say � D kC r , with k 2 N0 and
r 2 .0; 1/), then we define the X -valued Sobolev–Slobodecki space W �;p.RIX/ as the space of functions
in W k;p.RIX/ with

kf k PW �;p.RIX/
WD

�Z
R�R

kDkf .t/�Dkf .s/k
p
X

jt � sjrpC1
ds dt

�1
p

<1; (2-1)

again with the usual modification in the case of pD1. Further, let PW �;p.RIX/ be the space of all locally
integrable X-valued functions f for which (2-1) is finite. If we factor out the equivalence relation �,
where f � g if kf �gk PW �;p.RIX/

D 0, the space PW �;p.RIX/ equipped with the norm k � k PW �;p.RIX/
is

a Banach space.
Moreover, in order to treat regularity results in both time and space efficiently, we introduce spaces

with dominating mixed derivatives set in the framework of Fourier analysis, that is, corresponding Besov
spaces. These spaces have a long history in the literature, beginning with [Nikolsky 1962; 1963a; 1963b].
We refer the reader to [Schmeisser and Triebel 1987]. We adopt the notation of [Schmeisser and Triebel
1987] for the nonhomogeneous spaces. Corresponding homogeneous Besov spaces are treated in [Triebel
1977a; 1977b]; we adapt the notation to be consistent with that of [Schmeisser and Triebel 1987]. We
recall from [Triebel 1977a] the definition of the spaces Z and Z 0 replacing the standard Schwartz space
S DS .RdC1/ and the space of tempered distributions S 0DS 0.RdC1/ in the definition of homogeneous
spaces. As we are concerned with function spaces in the time variable t 2 R and the spatial variable
x 2 Rd, we introduce, in addition to RdC1 D Rt �Rdx , also the subset

PRdC1 WD f.t; x/ 2 RdC1 W t jxj ¤ 0g:

Note that in [Triebel 1977a], the notation
C

R2 is used, which gives a better geometrical intuition of the set
taken out of R2. However, for typesetting reasons, we have decided on the notation PRdC1. Then we let
PD be the subset of the standard space of test functions D , consisting of functions with compact support in
PRdC1 and view it as a locally convex space equipped with the canonical topology. Its dual space is denoted
by PD 0, and is referred to as distributions over PRdC1. We define Z as the image of PD �S under the Fourier
transform F in time and space, equipped with the inherited topology from PD . The corresponding dual
space is denoted by Z 0. Since F W PD!Z , we can define by duality the Fourier transform F WZ 0! PD 0.

It holds Z � S with a continuous embedding, but the fact that Z is not densely embedded in S

prevents one from stating S 0 �Z 0. However, we note that for p 2 .1;1/, the space Lp.RdC1/ can be
viewed both as subspace of S 0 and as a subspace of Z 0; see Theorem 3.3 in [Triebel 1977a].

Let ' be a smooth function supported in the annulus
˚
� 2 Rd W 1

2
6 j�j6 2

	
and such thatX

j2Z

'j .�/ WD
X
j2Z

'.2�j �/D 1 for all � 2 Rd n f0g:

Similarly, let � be a smooth function supported in
�
�2;�1

2

�
[
�
1
2
; 2
�

withX
l2Z

�l.�/ WD
X
l2Z

�.2�l�/D 1 for all � 2 R n f0g:
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Moreover, define �j WD 'j for j > 1 and �0 WD 1 �
P
j>1 �j , as well as  l WD �l for l > 1 and

 0 WD 1�
P
l>1 �l . We will use the shorthand notation �l'j for the function .�; �/ 7! �l.�/'j .�/, and

similarly for combinations of  l and �j .

Definition 2.1. Let �i 2 .�1;1/, i D t; x, and p 2 Œ1;1�. Set N� WD .�t ; �x/.

(i) The homogeneous Besov space with dominating mixed derivatives S N�p;1 PB.R
dC1/ is given by

S N�p;1
PB WD S N�p;1

PB.RdC1/ WD ff 2Z 0 W kf k
S N�p;1 PB

<1g;

with the norm
kf k

S N�p;1 PB
WD sup

l;j2Z

2�t l2�xj kF�1t;x�l'jFt;xf kLp.RdC1/:

Similarly, the space S N�
p;1;.1/

PB.RdC1/ is given via the norm

kf k
S N�
p;1;.1/

PB
WD sup

l;j2Z

2�t l2�xj kF�1t;x�l'jFt;xf kLp;1.RdC1/:

(ii) The homogeneous Chemin–Lerner spaces zLpt PB
�x
p;1.R

dC1/ and zLpx PB
�t
p;1.R

dC1/ are given by

zL
p
t
PB�xp;1 WD

zL
p
t
PB�xp;1.R

dC1/ WD ff 2S 0 W kf kzLpt PB
�x
p;1

<1g;

zLpx
PB�tp;1 WD

zLpx
PB�tp;1.R

dC1/ WD ff 2S 0 W kf kzLpx PB
�t
p;1

<1g;

with the norms
kf kzLpt PB

�x
p;1
WD sup

j2Z

2�xj kF�1x 'jFxf kLp.RdC1/;

kf kzLpx PB
�t
p;1
WD sup

l2Z

2�t lkF�1t �lFtf kLp.RdC1/;

respectively.

(iii) The nonhomogeneous Besov space with dominating mixed derivatives S N�p;1B.R
dC1/ is given by

S N�p;1B WD S
N�
p;1B.R

dC1/ WD ff 2S 0.RdC1/ W kf kS N�p;1B <1g;

with the norm
kf kS N�p;1B WD sup

l;j>0

2�t l2�xj kF�1t;x l�jFt;xf kLp.RdC1/:

(iv) The nonhomogeneous Chemin–Lerner space zLpt B
�x
p;1.R

dC1/ is given by

zL
p
t B

�x
p;1 WD

zL
p
t B

�x
p;1.R

dC1/ WD ff 2S 0 W kf kzLpt B
�x
p;1

<1g;

with the norm kf kzLpt B�xp;1 WD supj>0 2
�xj kF�1x �jFxf kLp.RdC1/.

Remark 2.2. All spaces considered in Definition 2.1 are Banach spaces; see [Triebel 1977a]. Note that
for # 2 R, we use the notation # N� D .#�t ; #�x/. In this note, we restrict ourselves to the third index
of the Besov-type space being infinity, in which case the spaces S N�p;1B are sometimes called Nikolsky
spaces of dominating mixed derivatives in the literature. However, there is no conceptual limitation to
consider also third indices q 2 Œ1;1�. By the same token, one could also consider spaces with different
indices p and q in different directions. We refer the reader to [Schmeisser and Triebel 1987] for more
details concerning such spaces.
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Lemma 2.3. Let �x > 0 and p 2 Œ1;1�. Then

zL
p
t B

�xC"
p;1 .RdC1/� Lp.RIW �x ;p.Rd //� zL

p
t B

�x�ı
p;1 .RdC1/;

whenever " > 0 and ı 2 .0; �x�.

Proof. This follows from [Bahouri, Chemin, and Danchin 2011, p. 98]. �

Lemma 2.4. Let �t ; �x >0 and p 2 Œ1;1/. Then S N�p;1B �W
�t ;p.RIW �x ;p.Rd // whenever �t 2 Œ0; �t /

and �x 2 Œ0; �x/.

Proof. The proof is a combination of results in [Schmeisser and Triebel 1987], which are written for
R � R but also true for R � Rd by an inspection of their respective proofs: Without loss of general-
ity, we can assume that �t and �x are noninteger. By [loc. cit., Section 2.3.4, Remark 4], we have
W �t ;p.RIW �x ;p.Rd //D SB N�p;p; see [loc. cit., Section 2.2.1, Definition 2] for a definition of the latter
space. Since by [loc. cit., Section 2.2.3, Proposition 2] we have S N�p;1B � SB

N�
p;p , this yields the claim. �

Lemma 2.5. Let �t ; �x > 0 and p 2 Œ1;1�. Then

.Lp.RdC1/\ zLpx
PB�tp;1\

zL
p
t
PB�xp;1\S

N�
p;1
PB/D S N�p;1B

with equivalent norms.

Proof. As smooth and compactly supported functions,  0 and �0 extend to Lp multipliers for all
p 2 Œ1;1�; see, e.g., [Bergh and Löfström 1976].
For f 2 .Lp.RdC1/\ zLpx PB

�t
p;1\

zL
p
t
PB
�x
p;1\S

N�
p;1
PB/�S 0.RdC1/ we obtain

kf kS N�p;1B 6 kF
�1
t;x 0�0Ft;xf kLpt;x

C sup
l>0

2�t lkF�1t;x�l�0Ft;xf kLpt;x

C sup
j>0

2�xj kF�1t;x 0'jFt;xf kLpt;x
C sup
l;j>0

2�t l2�xj kF�1t;x�l'jFt;xf kLpt;x

. kf kLpt;x C sup
l>0

2�t lkF�1t �lFtf kLpt;x

C sup
j>0

2�xj kF�1x 'jFxf kLpt;x
C sup
l;j>0

2�t l2�xj kF�1t;x�l'jFt;xf kLpt;x

. kf kLpt;x Ckf kzLpx PB�tp;1 Ckf kzLpt PB�xp;1 Ckf kS N�p;1 PB :

Conversely, for f 2 S N�p;1B , we estimate the four contributions corresponding to Lp.RdC1/, zLpx PB
�t
p;1,

zL
p
t
PB
�x
p;1, and S N�p;1 PB separately. We start by noting that due to �t ; �x > 0, the invariance of multiplier

norms with respect to dilation, �l D �l Q 0 for l 6 0 and 'j D 'j Q�0 for j 6 0, where Q 0 WD  0C 1 and
Q�0 WD �0C�1, we have

sup
l60

2�t lkF�1t �lFtf kLpt;x
. kF�1t Q 0Ftf kLpt;x

;

sup
j60

2�xj kF�1x 'jFxf kLpt;x
. kF�1x Q�0Fxf kLpt;x

:
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Furthermore we use the fact that for � > 0 one has the estimate
P
n>0 janj. supn>0 2

�njanj for any
sequence .an/� R with a constant depending on � . With this, we obtain

kf kLpt;x
6
X
l;j>0

kF�1t;x l�jFt;xf kLpt;x
. sup
l;j>0

2�t l2�xj kF�1t;x l�jFt;xf kLpt;x
6 kf kS N�p;1B :

Next, we compute

kf kzLpx PB
�t
p;1
6 sup
l60

2�t lkF�1t �lFtf kLpt;x
Csup
l>0

2�t lkF�1t  lFtf kLpt;x

. kF�1t Q 0Ftf kLpt;x
Csup
l>0

2�t lkF�1t  lFtf kLpt;x

6
X
j>0

kF�1t;x
Q 0�jFt;xf kLpt;x

Csup
l>0

X
j>0

2�t lkF�1t;x l�jFt;xf kLpt;x

. sup
j>0

2�xj kF�1t;x
Q 0�jFt;xf kLpt;x

C sup
l>0;j>0

2�t l2�xj kF�1t;x l�jFt;xf kLpt;x
. kf kS N�p;1B :

By analogy, kf kzLpt PB�xp;1 . kf kS N�p;1B . Hence, it remains to control kf k
S N�p;1 PB

. We split this term into
the four contributions

kf k
S N�p;1 PB

D sup
l;j>0

2�t l2�xj kF�1t;x l�jFt;xf kLpt;x
C sup
l>0;j60

2�t l2�xj kF�1t;x l'jFt;xf kLpt;x

C sup
l60;j>0

2�t l2�xj kF�1t;x�l�jFt;xf kLpt;x
C sup
l;j60

2�t l2�xj kF�1t;x�l'jFt;xf kLpt;x
:

The first contribution is immediately estimated by kf kS N�p;1B . For the second contribution, we have

sup
l>0;j60

2�t l2�xj kF�1t;x l'jFt;xf kLpt;x
. sup
l>0

2�t lkF�1t;x l
Q�0Ft;xf kLpt;x

6 kf kS N�p;1B ;

and a similar estimate holds for the third contribution. For the fourth contribution, we have

sup
l;j60

2�t l2�xj kF�1t;x�l'jFt;xf kLpt;x
. kF�1t;x Q 0 Q�0Ft;xf kLpt;x

: �

3. Optimality of estimates via scaling

It is well known that in the linear case mD 1 one has estimates of the form

kuk
L1t
PW
�x;1
x
6 c.�x/.ku0kL1x CkSkL1t;x /; (3-1)

for all �x < 2. In the case m> 1, such an estimate cannot be true for any �x > 0 anymore. Intuitively,
this is due to the linear nature of (3-1) (observe that the integrability exponent is equal on both sides of
the inequality), which is not compatible with the nonlinear equation (1-1). We will make this intuition
more precise by the following lemma based on a scaling argument.
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Lemma 3.1. Let T > 0, m> 1, � 2 Œ1;m�, p 2 Œ1;1/ and �t ; �x > 0. Assume that there is a constant
c D c.m;�; p; �t ; �x/ > 0 such that

kuŒ��k
p

PW �t ;p.0;T I PW �x;p.Rd //
6 c.ku0kL1.Rd /CkSkL1.0;T IL1.Rd /// (3-2)

for all solutions u to (1-1). Then

p6
m

�C .m� 1/�t
6
m

�
; �t 6

m��p

p.m� 1/
6
m��

m� 1
; �xD

�p� 1

p

2

m� 1
6
2.�� �t /

m
6
2�

m
: (3-3)

In particular, if �t D .m��/=.m� 1/, then p D 1 and �x D 2.�� 1/=.m� 1/.

Proof. For positive constants �; 
 > 1 with �m�1 D 
 and a fixed triple .u; u0; S/ such that u satisfies
(1-1) with initial condition u0 and forcing S we consider the rescaled quantities . Qu; Qu0; zS/ defined via

Qu.t; x/ WD �u.
 t; x/; Qu0.x/ WD �u0.x/; zS.t; x/ WD �mS.
 t; x/;

where we have tacitly extended S on .T; 
T / by 0. Then Qu satisfies (1-1) with Qu0 2 L1.Rd / and
zS 2 L1.0; T IL1.Rd //, so that (3-2) gives

k QuŒ��k
p

PW �t ;p.0;T I PW �x;p.Rd //
6 c.k Qu0kL1.Rd /Ck zSkL1.0;T IL1.Rd ///: (3-4)

We observe

k QuŒ��k
p

PW �t ;p.0;T I PW �x;p.Rd //
D ��p
�tp�1kuŒ��k

p

PW �t ;p.0;
T I PW �x;p.Rd //
;

as well as k Qu0kL1.Rd / D �ku0kL1.Rd / and k zSkL1.0;T IL1.Rd // D �kSkL1.0;
T IL1.Rd //. Thus, it follows
from (3-4) that

kuŒ��k
p

PW �t ;p.0;T I PW �x;p.Rd //
6 c�1��p
1��tp.ku0kL1.Rd /CkSkL1.0;
T IL1.Rd ///

D c�.m�1/.1��tp/C1��p.ku0kL1.Rd /CkSkL1.0;T IL1.Rd ///: (3-5)

As long as u0 or S are nontrivial and unless

.m� 1/.1� �tp/C 1��p > 0; (3-6)

this gives the contradiction u D 0 by sending �!1 (and consequently also 
 !1). Since �t > 0,
(3-6) gives

p 6
m

�C .m� 1/�t
6
m

�
:

By the same token, since p > 1, (3-6) gives

�t 6
m��p

p.m� 1/
6
m��

m� 1
:

Next, we rescale in space. More precisely, for positive constants �; 
 > 0 with �1�m D 
2 and a fixed
triple .u; u0; S/ as above we consider the rescaled quantities . Qu; Qu0; zS/ defined via

Qu.t; x/ WD �u.t; 
x/; Qu0.x/ WD �u0.
x/; zS.t; x/ WD �S.t; 
x/:
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Then Qu satisfies (1-1) with Qu0 2 L1.Rd / and zS 2 L1.0; T IL1.Rd //, so that (3-2) gives

k QuŒ��k
p

PW �t ;p.0;T I PW �x;p.Rd //
6 c.k Qu0kL1.Rd /Ck zSkL1.0;T IL1.Rd ///: (3-7)

We have
k QuŒ��k

p

PW �t ;p.0;T I PW �x;p.Rd //
D ��p
�xp�dkuŒ��k

p

PW �t ;p.0;T I PW �x;p.Rd //
;

as well as k Qu0kL1.Rd / D �

�dku0kL1.Rd / and k zSkL1.0;T IL1.Rd // D �


�dkSkL1.0;T IL1.Rd //. Thus, it
follows from (3-7) and the relation �1�m D 
2 that

kuŒ��k
p

PW �t ;p.0;T I PW �x;p.Rd //
6 c�1��p
��xp.ku0kL1.Rd /CkSkL1.0;T IL1.Rd ///

D c�
�xp.m�1/

2
C1��p.ku0kL1.Rd /CkSkL1.0;T IL1.Rd ///: (3-8)

As long as u0 or S are nontrivial and unless

�xp.m� 1/

2
C 1��p D 0 () �x D

�p� 1

p

2

m� 1
; (3-9)

this gives the contradiction u D 0 by sending �! 0 or �!1 (and consequently 
 !1 or 
 ! 0,
respectively). Plugging into (3-9) the restrictions on p and �t , we obtain the result. �

Remark 3.2. If one sets �D 1, pD 1 and �t D 0, Lemma 3.1 tells us that �x cannot be positive, which is
what we claimed following (3-1). Moreover, we emphasize that Lemma 3.1 shows that in the case of the
whole space, the regularity exponent �x 2 Œ2.�� 1/=.m� 1/; 2�=m� is in a one-to-one correspondence
to the integrability exponent p 2 Œ1;m=�� via

�x D
�p� 1

p

2

m� 1
and p D

2

2�� �x.m� 1/
:

The Barenblatt solution. Consider the Barenblatt solution

uBB.t; x/ WD t
�˛.C � kjxt�ˇ j2/

1
m�1

C
;

where

m> 1; ˛ WD
d

d.m� 1/C 2
; k D

˛.m� 1/

2md
; ˇ D

˛

d
;

and C > 0 is a free constant. Then, for � 2 Œ1;m�, uŒ��BB 2 L
m=�.0; T I PW s;m=�.Rd // implies s < 2�=m.

Proof. With F.x/ WD .C � kjxj2/�=.m�1/
C

we have uŒ��BB.t; x/D t
�˛�F.xt�ˇ /. We next observe that,

for s 2 .0; 1/ and each t > 0,

ku
Œ��
BB.t; � /k

m
�

PW s;m=�.Rd /
D

Z
Rd�Rd

ju
Œ��
BB.t; x/�u

Œ��
BB.t; y/j

m
�

jx�yj
sm
�
Cd

dx dy

D t�˛m�ˇ.
sm
�
Cd/C2dˇ

kF k
m
�

PW s;m=�.Rd /
:

Hence,

ku
Œ��
BBk

m
�

Lm=�.0;T I PW s;�=m.Rd //
D kt�˛m�ˇ.

sm
�
Cd/C2dˇ

kL1.0;T /kF k
m
�

PW s;m=�.Rd /
;
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which is finite if and only if

�˛m�ˇ

�
sm

�
C d

�
C 2dˇ > �1 and F 2 PW s;m

� .Rd /:

Hence, necessarily

mC
1

d

�
sm

�
C d

�
� 2 <

1

˛
D
d.m� 1/C 2

d
;

which is equivalent to s < 2�=m. In the case s 2 .1; 2/ we observe that it holds

@xiu
Œ��
BB.t; x/D t

�˛�Cˇ@xiF.xt
�ˇ /;

so that analogous arguments may be applied. �

4. Averaging lemma approach

In [Gess 2020], an averaging lemma was introduced that can be applied directly to the porous medium
equations (1-1) to obtain estimates on the spatial regularity of u, but so far, no corresponding estimates
for powers of the solution u� or its time regularity could be obtained. In this section, we provide an
averaging lemma that gives a comprehensive answer to both of these questions. To this end, we recall
the definition of the anisotropic and isotropic truncation properties from [Gess 2020], which extend the
truncation property introduced in [Tadmor and Tao 2007, Definition 2.1].

Definition 4.1. (i) Let m be a complex-valued Fourier multiplier. We say that m has the truncation
property if, for any locally supported bump function  on C and any 1 6 p <1, the multiplier with
symbol  .m.�/=ı/ is an Lp-multiplier as well as an MTV -multiplier uniformly in ı > 0, that is, its
Lp-multiplier norm (MTV -multiplier norm resp.) depends only on the support and C l size of  (for
some large l that may depend on m) but otherwise is independent of ı.

(ii) Let m W Rd
�
�Rv! C be a Carathéodory function such that m. � ; v/ is radial for all v 2 R. Then m is

said to satisfy the isotropic truncation property if, for every bump function  supported on a ball in C,
every bump function ' supported in

˚
� 2 C W 1

2
6 j�j6 2

	
and every 1 < p <1,

M ;Jf .x; v/ WDF�1x '

�
j�j2

J 2

�
 

�
m.�; v/

ı

�
Fxf .x/

is an Lpx -multiplier for all v 2 R, J D 2j, j 2 Z, and, for all r > 1,

kkM ;J kMpkLrv . j�m.J; ı/j
1
r ;

where

�m.J; ı/ WD

�
v 2 R W

ˇ̌̌̌
m.J; v/

ı

ˇ̌̌̌
2 supp 

�
:

Here we use an abuse of notationˇ̌̌̌
m.J; v/

ı

ˇ̌̌̌
WD sup

�ˇ̌̌̌
m.�; v/

ı

ˇ̌̌̌
W
j�j2

J 2
2 supp'

�
:
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We recall that for m.�; v/ WD j�j2jvj, the anisotropic truncation property is satisfied uniformly in v by
Example A.2 in [Gess 2020] and the isotropic truncation property is satisfied by Example 3.2 in [Gess
2020], albeit only in the case J > 1. However, the proof given there can be used without any changes to
obtain the full assertion for general J 2 Z.

Lemma 4.2. Assume m 2 .1;1/, 
 2 .�1; m/, � 2 Œ1;mC1�
/ and let f 2Lˇt;x;v , where ˇ0 D 1=�
with � 2 .0; 1/, be a solution to

L .@t ;rx; v/f .t; x; v/D g0.t; x; v/C @vg1.t; x; v/ on Rt �Rdx �Rv: (4-1)

Here, the differential operator L .@t ;rx; v/ that is given in terms of its symbol

L .i�; i�; v/ WD i� Cjvjm�1j�j2; (4-2)

and gi are Radon measures satisfying

jg0j.t; x; v/jvj
1�

Cjg1j.t; x; v/jvj

�

2MTV .Rt �Rdx �Rv/:

Suppose

s 2

�
�� 2C 


m� 1
; 1

�
\ Œ0; 1�:

Then Nf 2 S N�
p;1;.1/

PB , where Nf .t; x/ WD
R
f .t; x; v/jvj��1 dv, N� WD .�t ; �x/ and

p WD
s.m�1/C1�
C�

��C.1��/.s.m�1/C1�
/
; �t WD

.1�s/.��1C�/

s.m�1/C1�
C�
; �x WD

2s.��1C�/

s.m�1/C1�
C�
: (4-3)

Moreover, we have the estimate

k Nf k
S N�
p;1;.1/

PB
. kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v

: (4-4)

If additionally Nf 2 Lrt;x , p ¤ r 2 Œ1;1�, then for all q 2 .minfp; rg;maxfp; rg/ it holds Nf 2 S# N�q;1 PB ,
where # 2 .0; 1/ is such that

1

q
D
1�#

r
C
#

p
:

In this case we have

k Nf k
S# N�q;1 PB

. kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf k
L
ˇ
t;x;v
Ck Nf kLrt;x : (4-5)

Finally, if s D 1 and consequently �t D 0, then (4-5) remains true if we replace the space S# N�q;1 PB D
S
.0;#�x/
q;1

PB by zLqt PB
#�x
q;1.

Remark 4.3. Observe that for

� 2

�
mC 1� 
 ��

mC 1� 

; 1

�
one may prescribe a specific integrability exponent. More precisely, given

Qp 2

�
1� 
 C �

��C .1� �/.1� 
/
;
mC 1� 


�

�
\

�
1;
mC 1� 


�

�
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choose

s WD
� Qp�C Qp.1� �/.1� 
/� 1C 
 C �

.m� 1/.1� Qp.1� �//
2

�
�� 2C 


m� 1
; 1

�
\ Œ0; 1�:

Then (4-3) reads p D Qp, as well as

�t WD
mC �� 
 ��p�Cp.1� �/.
 �m/

p�

1

m� 1
;

�x WD
�p�Cp.1� �/.1� 
/� 1C 
 � �

p�

2

m� 1
:

Observe that in the limiting case �! 1 and 
 ! 1, these orders of differentiability correspond to the
ones found in (3-3).

Proof of Lemma 4.2. We first assume that f is compactly supported with respect to the variable v. This
condition will enter only qualitatively, and never appears in quantitative form. Therefore, at the end of
the proof, we can again remove this additional assumption.

Since we are interested in regularity in terms of homogeneous Besov spaces, we decompose f into
Littlewood–Paley blocks with respect to the t-variable and the x-variable. Let f�lgl2Z be a partition of
unity on R n f0g and f'j gj2Z a partition of unity on Rd n f0g as in Section 2. Then we define for l; j 2 Z

fl;j WDF�1t;x Œ�l'jFt;xf �;

where Ft;xfl;j .�; �; v/ is supported on frequencies j�j � 2j , j� j � 2l for l; j 2 Z. Similarly, we define
the decompositions g0;l;j and g1;l;j of g0 and g1, respectively. We consider a microlocal decomposition
of fl;j connected to the degeneracy of the operator L .@t ;rx; v/. Let  0 2C1c .R/ be a smooth function
supported in B2.0/ and set  1 WD 1� 0. For ı > 0 to be specified later we write

fl;j DF�1x  0

�
jvjj�j2

ı

�
Fxfl;j CF�1x  1

�
jvjj�j2

ı

�
Fxfl;j DW f

0
l;j Cf

1
l;j :

Since f is a solution to (4-1), we have

F�1t;xL .i�; i�; v/Ft;xf
1
l;j .t; x; v/DF�1x  1

�
jvjj�j2

ı

�
Fx

�
g0;l;j .t; x; v/C @vg1;l;j .t; x; v/

�
(4-6)

and thus

f 1l;j .t; x; v/DF�1t;x 1

�
jvjj�j2

ı

�
1

L .i�; i�; v/
Ft;xg0;l;j .t; x; v/

CF�1t;x 1

�
jvjj�j2

ı

�
1

L .i�; i�; v/
Ft;x@vg1;l;j .t; x; v/

DW f 2l;j .t; x; v/Cf
3
l;j .t; x; v/: (4-7)

In conclusion, we have arrived at the decomposition

Nfl;j WD

Z
fl;j jvj

��1 dvD
Z
f 0l;j jvj

��1 dvC
Z
f 2l;j jvj

��1 dvC
Z
f 3l;j jvj

��1 dvDW Nf 0l;jC Nf
2
l;jC

Nf 3l;j :

We aim to estimate the regularity of these three contributions separately.
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Step 1: f 0. We note that we have the estimate kF�1t �lFf kLˇt;x
. kf k

L
ˇ
t;x

with a constant independent
of l , since k�lkMˇ D k�0kMˇ <1. Let l; j 2 Z be arbitrary, fixed. Then, we have that jvj6 2 � 2�2j ı
on the support of '.2�j �/ 0.jvjj�j2=ı/, so that j�m.2j ; ı/j. jŒ�2 � 2�2j ı; 2 � 2�2j ı�j. 2�2j ı. Hence,
by the isotropic truncation property and Minkowski’s and Hölder’s inequality it holds



Z f 0l;j jvj

��1 dv





L
ˇ
t;x

D





Z F�1x  0

�
jvjj�j2

ı

�
jvj��1Fxfl;j dv






L
ˇ
t;x

.
Z 



F�1x  0

�
jvjj�j2

ı

�
jvj��1Fxfl;j






L
ˇ
t;x

dv

.
�
ı

22j

���1 Z 



F�1x  0

�
jvjj�j2

ı

�
Fxfl;j






L
ˇ
t;x

dv

.
�
ı

22j

���1 Z
kM 0;2�j

kMˇkf k
L
ˇ
t;x

dv

6
�
ı

22j

���1
kkM 0;2�j

kMˇk
L
ˇ0

v
kf k

L
ˇ
t;x;v

.
�
ı

22j

���1
j�m.2

j ; ı/j
1
ˇ0 kf k

L
ˇ
t;x;v
.
�
ı

22j

���1C�
kf k

L
ˇ
t;x;v

;

where we have used ˇ0 D 1=�.

Step 2: f 2. Let l; j 2 Z be arbitrary, fixed. Since s 2 Œ0; 1�, we clearly have

j� j1�sjvjs.m�1/j�j2s 6 jL .i�; i�; v/j:

Moreover, in light of s >��2C
=.m�1/ we have on the support of �l'j 1.jvjj�j2=ı/ (so that j� j � 2l,
j�j � 2j, and jvj& 2�2j ı)

jvj��2C


jL .i�; i�; v/j
.

jvj��2C


j� j1�sjvjs.m�1/j�j2s
.
.2�2j ı/��2C
�s.m�1/

2l.1�s/22js
D

22j.s.m�2/��C2�
/

ıs.m�1/��C2�
2l.1�s/
:

Hence, by Theorem B.1 and Lemma B.4, jvj��2C
=L .i�; i�; v/ acts on the support of �l'j 1.jvjj�j2=ı/
as a constant multiplier of order

22j.s.m�2/��C2�
/

ıs.m�1/��C2�
2l.1�s/
:

Consequently, by the anisotropic truncation property



Z f 2l;j jvj
��1 dv






L1t;x

D





Z F�1t;x 1

�
jvjj�j2

ı

�
jvj��2C


L .i�; i�; v/
Ft;xjvj

1�
g0;l;j dv





L1t;x

.
22j.s.m�2/��C2�
/

ıs.m�1/��C2�
2l.1�s/
kjvj1�
g0kMTV

:
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Here, we have used that with  0.jvjj�j2=ı/ also

 1

�
jvjj�j2

ı

�
D 1� 0

�
jvjj�j2

ı

�
is a bounded MTV -multiplier independent of ı > 0.

Step 3: f 3. Let l; j 2 Z arbitrary, fixed. We observe (recall L .i�; i�; v/D i� Cjvjm�1j�j2)Z
f 3l;j jvj

��1 dv D�
Z

F�1t;x 
0
1

�
jvjj�j2

ı

�
sgn.v/j�j2

ı

jvj��1

L .i�; i�; v/
Ft;xg1;l;j dv

� .�� 1/

Z
F�1t;x 1

�
jvjj�j2

ı

�
sgn.v/jvj��2

L .i�; i�; v/
Ft;xg1;l;j dv

C

Z
F�1t;x 1

�
jvjj�j2

ı

�
jvj��1@vL .i�; i�; v/

L .i�; i�; v/2
Ft;xg1;l;j dv

D�

Z
F�1t;x 

0
1

�
jvjj�j2

ı

�
jvjj�j2

ı

sgn.v/jvj��2C


L .i�; i�; v/
Ft;xjvj

�
g1;l;j dv

� .�� 1/

Z
F�1t;x 1

�
jvjj�j2

ı

�
sgn.v/jvj��2C


L .i�; i�; v/
Ft;xjvj

�
g1;l;j dv

C .m� 1/

Z
F�1t;x 1

�
jvjj�j2

ı

�
jvj�Cm�3C
 j�j2

L .i�; i�; v/2
Ft;xjvj

�
g1;l;j dv:

Observe that  01 is supported on an annulus. Therefore, we have as before j� j � 2l, j�j � 2j and
jvj & 2�2j ı on the support of �l'j 1.jvjj�j2=ı/, and additionally also jvj � 2�2j ı on the support of
�l'j 

0
1.jvjj�j

2=ı/. This last observation allows us to estimate the expression jvjj�j2=ı appearing in the
first integral on the right-hand side by

jvjj�j2

ı
. 1:

As in Step 2, we obtain

jvj��2C


jL .i�; i�; v/j
.

22j.s.m�2/��C2�
/

ıs.m�1/��C2�
2l.1�s/
;

and, similarly,

jvj�Cm�3C
 j�j2

jL .i�; i�; v/j2
D
jvj��2C


jL .i�; i�; v/j

jvjm�1j�j2

jL .i�; i�; v/j

.
jvj��2C


jL .i�; i�; v/j
.

22j.s.m�2/��C2�
/

ıs.m�1/��C2�
2l.1�s/
:

In light of these estimates, the expressions

jvjj�j2

ı

sgn.v/jvj��2C


L .i�; i�; v/
;

sgn.v/jvj��2C


L .i�; i�; v/
;
jvj�Cm�3C
 j�j2

L .i�; i�; v/2
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extend by Theorem B.1 and Lemma B.4 to constant multipliers of order

22j.s.m�2/��C2�
/

ıs.m�1/��C2�
2l.1�s/

on supports of �l'j 01.jvjj�j
2=ı/ and �l'j 1.jvjj�j2=ı/, respectively. Hence, by the anisotropic trunca-

tion property, we obtain



Z f 3l;j jvj
��1 dv






L1t;x

.
22j.s.m�2/��C2�
/

ıs.m�1/��C2�
2l.1�s/
kjvj�
g1;j kMTV

:

Step 4: Conclusion. We aim to conclude by real interpolation. We set, for z > 0,

K.z; Nfl;j / WD inf
˚
k Nf 1l;j kL1t;x

C zk Nf 0l;j kLˇt;x
W Nf 0l;j 2 L

ˇ
t;x;
Nf 1l;j 2 L

1
t;x;

Nfl;j D Nf
0
l;j C

Nf 1l;j
	
:

By the above estimates we obtain

K.z; Nfl;j /.
22j.s.m�2/��C2�
/

ıs.m�1/��C2�
2l.1�s/
.kjvj1�
g0kMTV

Ckjvj�
g1kMTV
/C z

�
ı

22j

���1C�
kf k

L
ˇ
t;x;v

:

We now equilibrate the first and the second term on the right-hand side: we choose ı > 0 such that

22j.s.m�2/��C2�
/

ıs.m�1/��C2�
2l.1�s/
D z

�
ı

22j

���1C�
I

that is,

ı�ac1�sd�aCs D zıbdb;

with a WD s.m� 1/��C 2� 
 , b WD �� 1C �, c WD 2�l and d WD 2�2j. This yields

ı D z�
1

aCb c
1�s
aCb d

s�a�b
aCb ;

and further

ı�ac1�sd�aCs D z
a
aCb c

.1�s/b
aCb d

sb
aCb :

Hence, with

� WD
a

aC b
D
s.m� 1/��C 2� 


s.m� 1/C 1� 
 C �

we obtain

z��K.z; Nfl;j /. 2�l
.1�s/.��1C�/
s.m�1/C1�
C� 2�2j

s.��1C�/
s.m�1/C1�
C� .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v

/

D 2�l�t2�j�x .kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf k
L
ˇ
t;x;v

/:

Observe that 1� � C �=ˇ D 1� � C �.1� �/D 1� ��, so that .L1t;x; L
ˇ
t;x/�;1 D L

p;1
t;x with

p D
1

1� ��
D

aC b

a.1� �/C b
D

s.m� 1/C 1� 
 C �

��C .1� �/.s.m� 1/C 1� 
/
:

Hence, we may take the supremum over z > 0 to obtain

k Nfl;j kLp;1t;x
. 2�l�t2�j�x .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v

/: (4-8)

Multiplying by 2l�t2j�x and taking the supremum over j; l 2 Z yields (4-4).
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If we assume additionally Nf 2Lrt;x , r ¤p, we choose for q 2 .minfp; rg;maxfp; rg/ a corresponding
# 2 .0; 1/ subject to 1=q D .1�#/=r C#=p. Then using .Lrt;x; L

p;1
t;x /#;q D L

q
t;x , together with (4-8),

we obtain

k Nfl;j kLqt;x
. k Nfl;j k1�#Lrt;x

k Nfl;j k
#
L
p;1
t;x

. k Nf k1�#Lrt;x
2�l#�t2�j#�x .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf kL1t;x;v /

#

6 2�l#�t2�j#�x .kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf k
L
ˇ
t;x;v
Ck Nf kLrt;x /:

Multiplying by 2l#�t2j#�x and taking the supremum over j; l 2 Z yields (4-5).
Finally we note that if sD 1 and consequently �t D 0, then the partition of unity f�lgl2Z in the Fourier

space connected to the time variable t is not necessary. Hence, if we set ˛� D 0 whenever Lemma B.4 is
invoked and replace Theorem B.1 by its isotropic variant (see Remark B.3), we obtain

k Nfj kLqt;x
. 2�j#�x .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v
Ck Nf kLrt;x /;

which shows Nf 2 zLq PB#�xq;1.
It remains to consider the case when f is not localized in v. We observe that for a smooth cut-off

function  2 C1c .R/, the function .t; x; v/! f .t; x; v/ .v/DW f  .t; x; v/ is a solution to

L .@t ;rx; v/f
 .t; x; v/D g

 
0 .t; x; v/Cg

 0

1 .t; x; v/C @vg
 
1 .t; x; v/ on Rt �Rdx �Rv;

where g 0 , g 
0

1 and g 1 are defined analogously. Hence, estimate (4-8) reads in this case

k Nf
 

l;j
kLp;1t;x

6 2�l#�t2�j#�x .kjvj1�
 .g 0 Cg
 0

1 /kMTV
Ckjvj�
g

 
1 kMTV

Ckf  k
L
ˇ
t;x;v

/:

Since jvj�
g1 2MTV by assumption, there exists for "n # 0 a sequence rn "1 such thatZ
Rt�Rdx�Rv

�frn6jvjgjvj
�
g1 dv dx dt 6 "n

for all n 2 N. For n 2 N and a smooth cut-off function  2 C1c .R/ with  D 1 on B1.0/ and
supp � B2.0/, we define  n via  n.v/ WD  .v=rn/. Hence  0n is supported on rn 6 jvj 6 2rn and
takes values in Œ0; 1=rn�, so that we may estimate

kjvj1�
g
 0n
1 kMTV

D

Z
Rt�Rdx�Rv

j 0n.v/jjvj.jvj
�
g1/ dv dx dt

D

Z
Rt�Rdx�Rv

�frn6jvj62rngj 
0
n.v/jjvj.jvj

�
g1/ dv dx dt

.
Z
�rn6jvj62rn jvj

�
g1 dv 6 "n:

Thus, taking the limit n!1 and using Fatou’s lemma, we obtain (4-8) also for general f . Multiplying
by 2l#�t2j#�x and taking the supremum over j; l 2 Z, we may conclude as before. �
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Lemma 4.4. Assume 
 2 .�1; 1/, m 2 .1;1/, � 2 Œ1; 2� 
/, � 2 .0; 1�, ˇ0 D 1=�, and let f , g0, g1,
and Nf be as in Lemma 4.2. Define

p WD
1� 
 C �

��C .1� �/.1� 
/
; �t WD

�� 1C �

1� 
 C �
: (4-9)

If Nf 2 Lrt;x , p ¤ r 2 Œ1;1�, then for all q 2 .minfp; rg;maxfp; rg/ we have Nf 2 zLqx PB
#�t
q;1, where

# 2 .0; 1/ is such that
1

q
D
1�#

r
C
#

p
:

Moreover,

k Nf kzLqx PB
#�t
q;1
. kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v
Ck Nf kLrt;x : (4-10)

Proof. By the same arguments as in the proof of Lemma 4.2, we may assume that f is localized in v. In
fact, the whole proof of Lemma 4.4 is similar to the one of Lemma 4.2, with the modification that here
we consider a microlocal decomposition of f depending on the size of v only and do not localize in the
Fourier space connected to the spatial variable x. More precisely, let f�lgl2Z be a partition of unity on
R n f0g as in Section 2. Then we define for l 2 Z

fl WDF�1x Œ�lFtf �;

where Ftfl.�; x; v/ is supported on frequencies j� j�2l for l 2Z. Similarly, we define the decompositions
g0;l and g1;l of g0 and g1, respectively. Moreover, we again consider a smooth function  0 2 C1c .R/
supported in B2.0/ and set  1 WD 1� 0. For ı > 0 to be specified later we write

fl D  0

�
jvj

ı

�
fl C 1

�
jvj

ı

�
fl DW f

0
l Cf

1
l :

Since f is a solution to (4-1), we have

F�1t;xL .i�; i�; v/Ft;xf
1
l .t; x; v/D  1

�
jvj

ı

��
g0;l.t; x; v/C @vg1;l.t; x; v/

�
and thus

f 1l .t; x; v/

DF�1t;x 1

�
jvj

ı

�
1

L .i�; i�; v/
Ft;xg0;l.t; x; v/CF�1t;x 1

�
jvj

ı

�
1

L .i�; i�; v/
Ft;x@vg1;l.t; x; v/

DW f 2l .t; x; v/Cf
3
l .t; x; v/;

so that we arrive at the decomposition

Nfl WD

Z
fl jvj

��1 dv D
Z
f 0l jvj

��1 dvC
Z
f 2l jvj

��1 dvC
Z
f 3l jvj

��1 dv

DW Nf 0l C
Nf 2l C

Nf 3l :

Again, we treat the three contributions separately.
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Step 1: f 0. Let l 2 Z be arbitrary, fixed. Since jvj. ı on the support of  0.jvj=ı/, using Minkowski’s
and Hölder’s inequalities, we have



Z f 0l jvj

��1 dv





L
ˇ
t;x

D





Z  0

�
jvj

ı

�
jvj��1fl dv






L
ˇ
t;x

6
Z
j 0j

�
jvj

ı

�
jvj��1kflkLˇt;x

dv

. ı��1
Z
j 0j

�
jvj

ı

�
kflkLˇt;x

dv

. ı��1kf k
L
ˇ
t;x;v

�Z
j 0j

�
jvj

ı

�̌ 0
dv
� 1
ˇ0

. ı��1C�kf k
L
ˇ
t;x;v

:

Step 2: f 2. Let l 2 Z be arbitrary, fixed. Since � 6 2� 
 , we have on the support of �l 1.jvj=ı/ (so
that j� j � 2l and jvj> ı)

jvj��2C


jL .i�; i�; v/j
.
jvj��2C


j� j
.
ı��2C


2l
:

By Lemma B.4 applied with ˛� D 0 and the isotropic variant of Theorem B.1 (see Remark B.3),
jvj��2C
=jL .i�; i�; v/j acts as a constant multiplier of order ı��2C
=2l on the support of �l 1.jvj=ı/.
Consequently



Z f 2l jvj

��1 dv





L1t;x

D





Z F�1t;x 1

�
jvj

ı

�
jvj��2C


L .i�; i�; v/
Ft;xjvj

1�
g0;l dv





L1t;x

.
ı��2C


2l
kjvj1�
g0kMTV

:

Step 3: f 3. Let l 2 Z be arbitrary, fixed. We observe (recall L .i�; i�; v/D i� Cjvjm�1j�j2)Z
f 3l jvj

��1 dv D�
Z

F�1t;x 
0
1

�
jvj

ı

�
sgn.v/
ı

jvj��1

L .i�; i�; v/
Ft;xg1;l dv

� .�� 1/

Z
F�1t;x 1

�
jvj

ı

�
sgn.v/jvj��2

L .i�; i�; v/
Ft;xg1;l dv

C

Z
F�1t;x 1

�
jvj

ı

�
jvj��1@vL .i�; i�; v/

L .i�; i�; v/2
Ft;xg1;l dv

D�

Z
F�1t;x 

0
1

�
jvj

ı

�
jvj

ı

sgn.v/jvj��2C


L .i�; i�; v/
Ft;xjvj

�
g1;l dv

� .�� 1/

Z
F�1t;x 1

�
jvj

ı

�
sgn.v/jvj��2C


L .i�; i�; v/
Ft;xjvj

�
g1;l dv

C .m� 1/

Z
F�1t;x 1

�
jvj

ı

�
jvj�Cm�3C
 j�j2

L .i�; i�; v/2
Ft;xjvj

�
g1;l dv
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Observe that  01 is supported on an annulus. Therefore, we have as before j� j � 2l and jvj > ı on the
support of �l 1.jvj=ı/, and additionally also jvj � ı on the support of �l 01.jvj=ı/. This last observation
allows us to estimate the expression jvj=ı appearing in the first integral on the right-hand side by jvj=ı. 1.
As in Step 2, we obtain

jvj��2C


jL .i�; i�; v/j
.
ı��2C


2l
;

and, similarly,

jvj�Cm�3C
 j�j2

jL .i�; i�; v/j2
D
jvj��2C


jL .i�; i�; v/j

jvjm�1j�j2

jL .i�; i�; v/j
.
jvj��2C


jL .i�; i�; v/j
.
ı��2C


2l
:

In light of these estimates, Lemma B.4 applied with ˛� D 0 and the isotropic variant of Theorem B.1 (see
Remark B.3) show that the expressions

jvj

ı

sgn.v/jvj��2C


L .i�; i�; v/
;

sgn.v/jvj��2C


L .i�; i�; v/
;
jvj�Cm�3C
 j�j2

L .i�; i�; v/2

extend to constant multipliers of order ı��2C
=2l on the supports of �l 01.jvj=ı/ and �l 1.jvj=ı/,
respectively. Hence, we obtain



Z f 3l jvj

��1 dv





L1t;x

.
ı��2C


2l
kjvj�
g1;j kMTV

:

Step 4: Conclusion. We aim to conclude by real interpolation. We set, for z > 0,

K.z; Nfl/ WD inf
˚
k Nf 1l kL1t;x

C zk Nf 0l kLˇt;x
W Nf 0l 2 L

ˇ
t;x;
Nf 1l 2 L

1
t;x;

Nfl D Nf
0
l C

Nf 1l
	
:

By the above estimates we obtain

K.z; Nfl/.
ı��2C


2l
.kjvj1�
g0kMTV

Ckjvj�
g1kMTV
/C zı��1C�kf k

L
ˇ
t;x;v

:

We now equilibrate the first and the second term on the right-hand side: we choose ı > 0 such that

ı��2C


2l
D zı��1C�I

that is,

ı WD z�
1

1�
C� 2�
l

1�
C� :

Hence, with

� WD
��C 2� 


1� 
 C �

we obtain

z��K.z; Nfl/. 2�l
��1C�
1�
C� .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v

/

D 2�l�t .kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf k
L
ˇ
t;x;v

/:
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As in Step 4 of the proof of Lemma 4.2 we use .L1t;x; L
ˇ
t;x/�;1 D L

p;1
t;x with

p D
1

1� ��
D

1� 
 C �

��C .1� �/.1� 
/

to obtain

k NflkLp;1t;x
. 2�l�t .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v

/: (4-11)

For q 2 .minfp; rg;maxfp; rg/ we choose a corresponding # 2 .0; 1/ subject to 1=q D .1�#/=rC#=p.
Then using .Lrt;x; L

p;1
t;x /#;q D L

q
t;x , together with (4-11), we obtain

k NflkLqt;x
. k Nflk1�#Lrt;x

k Nflk
#
L
p;1
t;x

. k Nf k1�#Lrt;x
2�l#�t .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf kL1t;x;v /

#

6 2�l#�t .kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf kL1t;x;v Ck
Nf kLrt;x /:

Multiplying by 2l#�t and taking the supremum over l 2 Z yields (4-10). �

Corollary 4.5. Let m 2 .1;1/, 
 2 .�1; m/, � 2 Œ1;mC 1� 
/, f 2 L1t;x;v \L
1
t;x;v be a solution to

(4-1), and let g0, g1 and Nf be as in Lemma 4.2. Let q 2 .1; .mC 1� 
/=�/ and define

Q�x WD
�q� 1

q

2

m� 

:

If Nf 2 L1.RdC1/\Lq.RIL1.Rd //, then Nf 2 Lq.RIW �x ;q.Rd // for all �x 2 Œ0; Q�x/. Furthermore,

k Nf kLqt .W
�x;q
x / . kjvj

1�
g0kMTV
Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
Ck Nf kL1t;x\L

q
t L
1
x
: (4-12)

Proof. We recall the decomposition fj DF�1x 'jFxf introduced in the proof of Lemma 4.2. We argue
that it suffices to consider the case when fj D 0 for all j < 0. Indeed, the part f< WD

P
j<0 fj can be

estimated in view of Bernstein’s lemma, see [Bahouri, Chemin, and Danchin 2011, Lemma 2.1], via

k Nf<kLqt .W
�x;q
x / . k Nf kLqt L1x :

We aim to control Nf in zLqt PB
#�x
q;1 where # 2 .0; 1/ is sufficiently large such that �x < #�x , and then use

Lemma 2.3 to the effect of

k Nf kLqt .W
�x;q
x / . k Nf kzLqt B#�xq;1

D k Nf kzLqt PB
#�x
q;1

;

where the last equality is apparent from the definition of the homogeneous and nonhomogeneous Chemin–
Lerner spaces and the fact that the low frequencies of f vanish. Thus, it remains to establish

k Nf kzLq PB#�xq;1
. kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf kL1t;x;v\L

1
t;x;v
Ck Nf kL1t;x

: (4-13)

For Qp 2 .1; .mC 1� 
/=�/, choose

� WD
. Qp� 1/.m� 
/

1C Qp.m��� 
/
:
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We claim that � is positive and well-defined: Since the numerator is positive due to Qp > 1 and m> 
 , it
remains to check that the denominator is positive. This is obvious for � 6m� 
 . For � > m� 
 , we
observe that due to � <mC 1� 
 we have

Qp <
mC 1� 


�
<

1

�C 
 �m
;

which implies 1C Qp.m���
/ > 0. Moreover, Qp < .mC1�
/=� can be rewritten as . Qp�1/.m�
/ <
1C Qp.m��� 
/, so that � 2 .0; 1/. Hence, we may apply Lemma 4.2 with this choice of � and with
s D 1. One checks that in this case the integrability and differentiability exponents in (4-3) read

p D Qp; �t D 0; �x D
� Qp� 1

Qp

2

m� 

:

Choose Qp 2 .q; .mC 1� 
/=�/ so that Q�x < �x and define # 2 .0; 1/ through

1

q
D 1�# C

#

Qp
:

We may choose Qp 2 .q; .mC1�
/=�/ sufficiently small so that # 2 .0; 1/ is so large that �x <# Q�x <#�x .
In view of (4-5) (with the space S# N�q;1 PB D S

.0;#�x/
q;1

PB replaced by zLqt PB
#�x
q;1) we obtain

k Nfj kLqt;x
. 2�j#�x .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v
Ck Nf kL1t;x

/;

where we recall the notation Nfj WD
R

F�1x Œ'jFxf �jvj
��1 dv. If we multiply by 2j#�x and take the

supremum over j 2 Z, this yields

k Nf kzLqt PB
#�x
q;1
. kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v
Ck Nf kL1t;x

:

By the estimate kf k
L
ˇ
t;x;v
. kf kL1t;x;v Ckf kL1t;x;v , this gives (4-13). �

Corollary 4.6. Let m 2 .1;1/, 
 2 .�1; 1/, f 2 L1t;x;v \L
1
t;x;v be a solution to (4-1), and let g0

and g1 be as in Lemma 4.2. Assume Nf 2Lrt;x for all r 2 Œ1;mC1�
/, where Nf .t; x/ WD
R
f .t; x; v/ dv.

Let Qp 2 .2� 
;mC 1� 
/ and define

Q�t WD
mC 1� 
 � Qp

Qp

1

m� 1
; Q�x WD

Qp� 2C 


Qp

2

m� 1
:

Then Nf 2 W �t ; Qp.RIW �x ; Qp.Rd // for all �t 2 Œ0; Q�t / and �x 2 Œ0; Q�x/. Furthermore, there is an r 2
. Qp;mC 1� 
/ such that

k Nf kW �t ; Qp.W �x; Qp/ . kjvj
1�
g0kMTV

Ckjvj�
g1kMTV
Ckf kL1t;x;v\L

1
t;x;v
Ck Nf kLrt;x : (4-14)

Proof. As we need to pass from homogeneous spaces (the output of Lemmas 4.2 and 4.4) to a nonho-
mogeneous space, our strategy is to invoke Lemmas 2.5 and 2.4. The input to Lemma 2.5 requires four
pieces of information, namely control of Nf in L Qp.RdC1/, zL Qpx PB

�t
Qp;1

, zL Qpt PB
�x
Qp;1

and S N�
Qp;1
PB . Since the

control of Nf in L Qp.RdC1/ is ensured by assumption, we concentrate on the other three contributions.
Note that the main difficulty lies in the condition that both the integrability exponent and the orders of
differentiability have to match exactly.
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Step 1: Nf 2 S N�
Qp;1
PB . Let r 2 . Qp;mC 1� 
/ to be chosen in Step 3. We claim that there exist functions

kt ; kx W .0;1/! .0;1/ with kt ."/; kx."/! 0 as "! 0 such that it holds for all "� 1

k Nf k
S N�
Qp;1
PB
. kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf kL1t;x;v\L

1
t;x;v
Ck Nf kLrt;x ; (4-15)

where we have used the notation �t WD Q�t � kt ."/ and �x WD Q�x � kx."/.
We apply Lemma 4.2 with � D 1, � D 1� ", and s WD s" 2 .0; 1/, where s" is chosen so that the

integrability assertion in (4-3) reads p D Qp; this is possible for � close to 1 in view of Remark 4.3.
Moreover, we may choose # 2 .0; 1/ such that �t and �x defined through (4-3) satisfy #�t D Q�t � kt ."/
and #�x D Q�x �kx."/ for some functions kt and kx as above. Then for 1 < q0 < Qp < q1 <mC1�
 so
that

1

q0
D 1�# C

#

Qp
;

1

q1
D
1�#

r
C
#

Qp
;

we obtain in view of (4-5) that

k Nfl;j kL
qi
t;x
. 2�l#�t2�j#�x .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v
Ck Nf kL1t;x\L

r
t;x
/;

for i D 0; 1, where we recall the notation Nfl;j WD
R

F�1t;x Œ�l'jFt;xf � dv. Since .Lq0t;x; L
q1
t;x/�; Qp D L

Qp
t;x

for an appropriate � 2 .0; 1/, we thus obtain

k Nfl;j kL Qpt;x
. 2�l#�t2�j#�x .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v
Ck Nf kL1t;x

Ck Nf kLrt;x /;

which after multiplying by 2l#�t2j#�x and taking the supremum over l; j 2 Z yields

k Nf k
S
#.�t ;�x/

Qp;1
PB
. kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v
Ck Nf kL1t;x

Ck Nf kLrt;x : (4-16)

By the estimate kf k
L
ˇ
t;x;v
Ck Nf kL1t;x

. kf kL1t;x;v Ckf kL1t;x;v , this gives (4-15).

Step 2: Nf 2 zL Qpt PB
�x
Qp;1

. In this step we establish

k Nf kzL Qp PB�x
Qp;1

. kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
Ck Nf kLrt;x : (4-17)

Choose

� WD
. Qp� 1/.m� 
/

1C Qp.m� 1� 
/
:

We claim that � is positive and well-defined: Since the numerator is positive due to Qp > 1 and m> 
 , it
remains to check that the denominator is positive. This is obvious for 
 6 m� 1. For 
 > m� 1, we
observe that

Qp <mC 1� 
 <
1

1C 
 �m
;

which implies 1C Qp.m� 1� 
/ > 0. Moreover, Qp < mC 1� 
 can be rewritten as . Qp� 1/.m� 
/ <
1C Qp.m� 1� 
/, so that � 2 .0; 1/. Hence, we may apply Lemma 4.2 with this choice of � and with
s D 1. One checks that in this case the integrability and differentiability exponents in (4-3) read

p D Qp; �t D 0; �x D
p� 1

p

2

m� 

:



OPTIMAL REGULARITY IN TIME AND SPACE FOR THE POROUS MEDIUM EQUATION 2465

We observe that �x > Q�x and hence we find # 2 .0; 1/ such that #�x D Q�x�kx."/. The same interpolation
argument as in Step 1 gives now the estimate (4-17).

Step 3: Nf 2 zL Qpx PB
�t
Qp;1

. In this step we show that there is some r 2 . Qp;mC 1� 
/ such that

k Nf kzL Qpx PB
�t
Qp;1

. kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf kL1t;x;v Ck
Nf kLrt;x : (4-18)

We apply Lemma 4.4 with �D 1 and �D 1. In this case, (4-9) reads pD 2�
 and �t D 1=.2�
/. Since
Qp > 2� 
 , we have Q�t < �t . Hence, we can choose # 2 .0; 1/ such that #�t D Q�t � kt ."/. In particular,

# <
Q�t

�t
D
mC 1� 
 � Qp

Qp

2� 


m� 1
<
2� 


Qp
;

so that

r D
Qp.2� 
/.1�#/

2� 
 �# Qp

is well-defined. Since r is increasing in # due to Qp > 2� 
 , we see that r 2 . Qp;mC 1� 
/. We have
1= Qp D .1�#/=r C#=p, and hence Lemma 4.4 gives estimate (4-18).

Step 4: Conclusion. Since Nf 2 L Qpt;x by assumption, Lemma 2.5 combined with Lemma 2.4 yields the
result. �

Corollary 4.7. Let m 2 .1;1/, 
 2 .�1; m/, and let f 2 L1t;x;v \L
1
t;x;v be a solution to (4-1). Let g0

and g1 be as in Lemma 4.2 and assume additionally

jg0j.t; x; v/ 2MTV .Rt �Rdx �Rv/:

Assume Qp 2 .2� 
;mC 1� 
/\ .1;mC 1� 
/ and define

Q�t WD
mC 1� 
 � Qp

Qp

1

m� 1
; Q�x WD

Qp� 2C 


Qp

2

m� 1
:

If Nf 2 Lr.RdC1/\L1.RIL Qp.Rd // for all r 2 Œ1;mC 1� 
/, where Nf .t; x/ WD
R
f .t; x; v/ dv, and

if
R
jvjm�1f dv 2 L1.RdC1/, then Nf 2 W �t ; Qp.RIW �x ; Qp.Rd // for all �t 2 Œ0; Q�t / and �x 2 Œ0; Q�x/.

Furthermore, there is an r 2 . Qp;mC 1� 
/ such that

k Nf kW �t ; Qp.W �x; Qp/ . kg0kMTV
Ckjvj1�
g0kMTV

Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
Ck Nf k

L1tL
Qp
x\L

r
t;x

C





Z jvjm�1f dv





L1t;x

: (4-19)

Proof. It suffices to adapt Step 3 of the proof of Corollary 4.6, that is, the control of Nf in zL Qpx PB
�t
Qp;1

.

Step 3: Nf 2 zL Qpx PB
�t
Qp;1

. In this step we show that there is some r 2 . Qp;mC 1� 
/ such that

k Nf kzL Qpx PB
�t
Qp;1

. kg0kMTV
Ckjvj1�
g0kMTV

Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
Ck Nf k

L1tL
Qp
x\L

r
t;x

C





Z jvjm�1f dv





L1t;x

: (4-20)



2466 BENJAMIN GESS, JONAS SAUER AND EITAN TADMOR

We split f into three contributions

f DF�1t  0.�/Ftf CF�1t;x .1� 0.�//.1��0.�//Ft;xf CF�1t;x .1� 0.�//�0.�/Ft;xf

DW f 1Cf 2Cf 3:

The low time-frequency part f 1 can be estimated in view of Lemma 2.3 and Bernstein’s lemma, see
[Bahouri, Chemin, and Danchin 2011, Lemma 2.1], via

k Nf 1kzL Qpx PB
�t
Qp;1

. k Nf 1kzL QpxB�tQp;1
. k Nf 1k

W �tC"; Qp.L
Qp
x /
. k Nf k

L1tL
Qp
x
: (4-21)

Next, we apply Lemma 4.2 with � D 1, sufficiently large � 2 .0; 1/ and sufficiently small s 2
..
 � 1/=.m � 1/; 1� so that (4-3) implies p < Qp and �t > Q�t . Hence, we can choose # 2 .0; 1/
such that Q�t > #�t > Q�t � kt ."/. In particular, in light of Remark 4.3

# <
Q�t

�t
D

mC 1� 
 � Qp

mC �� 
 �p�Cp.1� �/.
 �m/

p�

Qp
<
p

Qp
if 1� �� 1;

so that r D Qpp.1�#/=.p�# Qp/ is well-defined. Since r is increasing in # due to Qp > p, we see that
r 2 . Qp;mC 1� 
/. We have 1= Qp D .1�#/=r C#=p, and hence Lemma 4.2 gives

k Nf k
S# N�
Qp;1
PB
. kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf kL1t;x;v\L

1
t;x;v
Ck Nf kLrt;x :

Thus, since f 2 is supported only on �l'j for nonnegative l; j 2 Z, Lemmas 2.3 and 2.4 show, in view of
the definition of the homogeneous and nonhomogeneous Besov spaces and �t < #�t as well as 0 < #�x ,

k Nf 2kzL Qpx PB
�t
Qp;1

D k Nf 2kzL QpxB
�t
Qp;1

. k Nf 2kS# N�
Qp;1

B D k
Nf k
S# N�
Qp;1
PB
:

Thus,

k Nf 2kzL Qpx PB
�t
Qp;1

. kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
Ck Nf kLrt;x : (4-22)

It remains to estimate the contribution of f 3. For l 2 Z, we introduce f 3
l
WD F�1t �l.�/Ftf

3. Since
f 3
l
D 0 for l < 0, we may concentrate on the case l > 0. Observe that f 3

l
solves the equation

f 3l D�mjvj
m�1F�1t;x

j�j2

i�
�l.�/�0.�/Ft;xf CF�1t;x

�0.�/

i�
Ft;xg0;l CF�1t;x

�0.�/

i�
Ft;x@vg1;l :

Integrating in v, we obtain

Nf 3l D�m

Z
jvjm�1F�1t;x

j�j2

i�
�l.�/�0.�/Ft;xf dvCF�1t;x

1

i�
�0.�/Ft;x

Z
g0;l;j dv:

Since j�j2 acts as a constant multiplier on the support of �0 and ��1 acts as a constant multiplier of
order 2�l on the support of �l , it follows by Bernstein’s lemma

k Nf 3l kL Qpt;x
. 2l.1�

1
Qp
/
k Nf 3l kL1t;x

. 2�l
1
Qp

�



Z jvjm�1f dv





L1t;x

Ckg0kMTV

�
:
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Since Qp > 2� 
 , we have

�t < Q�t D
mC 1� 
 � Qp

Qp

1

m� 1
<
1

Qp
:

In view of l > 0 this yields

k Nf 3l kL Qpt;x
. 2�l�t

�



Z jvjm�1f dv





L1t;x

Ckg0kMTV

�
:

Multiplying by 2l�t and taking the supremum over l 2 Z, we conclude

k Nf 3kzL Qpx PB
�t
Qp;1

.




Z jvjm�1f dv






L1t;x

Ckg0kMTV
: (4-23)

Collecting (4-21), (4-22) and (4-23), we arrive at (4-20). �

5. Application to porous medium equations

In this section, we provide proofs of our main results by applying the averaging lemmas obtained in the
previous section to entropy solutions to (1-1).

Proof of Theorem 1.2. We first argue that we have u 2 Lst;x for all s 2 Œ1;m� 1C �/. Since T <1,
Theorem A.2 gives

kukL1t;x
. sup
t2Œ0;T �

ku.t/kL1x . ku0kL1x CkSkL1t;x ; (5-1)

so that we may concentrate on s > 1. Let f be the kinetic function corresponding to u and solving (1-8).
In order to apply Corollary 4.5 with �D 1 and �x D 0, we need to extend (1-8) to all times t 2 R, which
can be achieved by multiplication with a smooth cut-off function ' 2 C1c .0; T / with 06 ' 6 1. Hence,
we set g0 WD ıvDu.t;x/SC@t'f and g1 WD q. Let 
 WD 2��, so that s 2 .1;mC1�
/. From (4-12) we
obtain

k'ukLst;x . kjvj
��1g0kMTV

Ckjvj��2g1kMTV
Ck'f kL1t;x;v\L

1
t;x;v
Ck'ukL1t;x\L

s
tL
1
x

. kjvj��1g0kMTV
Ckjvj��2g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
C sup
t2Œ0;T �

ku.t/kL1x :

We note that since trivially f 2 L1t;x;v with norm bounded by 1, estimate (5-1) gives

kf kL1t;x;v\L
1
t;x;v
C sup
t2Œ0;T �

ku.t/kL1x . kukL1t;x C 1C sup
t2Œ0;T �

ku.t/kL1x . ku0kL1x CkSkL1t;x C 1:

Next, we check that jvj��1g0 2MTV . Indeed, we observe that .� � 1/�0 WD �, and hence, applying
Lemma A.3,

kjvj��1g0kMTV
D kjvj��1.ıvDu.t;x/S C @t'f /kMTV

. kjuj��1SkL1t;x Ck@t'juj
�
kL1t;x

. kjuj.��1/�
0

kL1t;x
CkjS j�kL1t;x

Ck@t'juj
�
kL1t;x

. ku0k�L�x CkSk
�

L
�
t;x

Ck@t'juj
�
kL1t;x

:
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Utilizing Lemma A.3 once more to the effect of

kjvj��2g1kMTV
D kjvj��2qkMTV

. ku0k�L�x CkSk
�

L
�
t;x

;

we obtain

k'ukLst;x . ku0k
�

L1x\L
�
x

CkSk
�

L1t;x\L
�
t;x

Ck@t'juj
�
kL1t;x

C 1:

We may set 'n.t/ D  .nt/ �  .nt � T=2/, where  2 C1.R/ with 0 6  6 1, supp � .0;1/,
 .t/D 1 for t > T=2 and k@t kL1 D 1. For n!1, 'n converges to 1Œ0;T � in the supremum norm,
while @t'n is a smooth approximation of ıftD0g� ıftDT g. Therefore, k'nukLst;x !kukLst;x and by an
application of Lemma A.3

k@t'njuj
�
kL1t;x

!kjuj.0/� � juj.T /�kL1x . ku0k
�

L
�
x
CkSk

�

L
�
t;x

;

so that u 2 Ls.Œ0; T ��Rd / and

kukLst;x . ku0k
�

L1x\L
�
x

CkSk
�

L1t;x\L
�
t;x

C 1: (5-2)

(i) We apply Corollary 4.5 once more. Let f , ', g0, g1 and 
 be as above. Then, in particular
p 2 .1; .mC 1� 
/=�/. From (4-12) we obtain

k'uŒ��kLpt .W �x;p/ . kjvj
1�
g0kMTV

Ckjvj�
g1kMTV
Ckf kL1t;x;v\L

1
t;x;v
CkuŒ��kL1t;x\L

p
t L

1
x
:

The first three contributions on the right-hand side are estimated as above. For the last contribution, we
note 16 � < p� and thus

kuŒ��kL1t;x\L
p
t L

1
x
. kuŒ��kLpt L1x D kuk

�

L
p�
t L

�
x
. .kukLp�t L1x

CkukLp�t;x
/�

. . sup
t2Œ0;T �

ku.t/kL1x CkukL
p�
t;x
/� . sup

t2Œ0;T �

ku.t/k
�

L1x
Ckuk

�

L
p�
t;x

C 1:

Furthermore, (5-1) together with (5-2) applied with s D p� 2 .1;m� 1C �/ shows

sup
t2Œ0;T �

ku.t/k
�

L1x
Ckuk

�

L
p�
t;x

C 1. ku0k��
L1x\L

�
x

CkSk
��

L1t;x\L
�
t;x

C 1:

Hence, arguing as above by taking the limit 'n! 1Œ0;T �, we obtain uŒ�� 2Lp.RIW �x ;p.Rd // and (1-4).

(ii) The proof is similar to the first part, but we use Corollary 4.6 instead of Corollary 4.5. Again we
localize in time by multiplying with a smooth cut-off function ' 2 C1c .0; T / with 06 ' 6 1 and set g0
and g1 as before. Choose 
 WD 2� �, so that p 2 .2� 
;mC 1� 
/. From (4-14) in Corollary 4.6 we
obtain

k'ukW �t ;p.W �x;p/ . kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
CkukLrt;x ;

where r 2 .�;m � 1C �/. The terms involving g0, g1 and f can be estimated as above, while the
Lrt;x-norm of u can be estimated by (5-2). Choosing 'n as above, we hence infer that 'nu is bounded in
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W �t ;p.0; T IW �x ;p.Rd // and

sup
n2N

k'nukW �t ;p.W �x;p/ . ku0k
�

L1x\L
�
x

CkSk
�

L1t;x\L
�
t;x

C 1:

Since 'nu! u1Œ0;T � in the sense of distributions, we obtain the result by the weak lower semicontinuity
of the norm in W �t ;p.0; T IW �x ;p.Rd //. �

Proof of Corollary 1.3. (i) Let �x 2 Œ0; 2�=m/. We apply Theorem 1.2(i) with p Dm=� for sufficiently
small � 2 .1; �� so that

�x <
�p� 1

p

2

m� 2C �
D
2�

m

m� 1

m� 2C �

and observe that for all q 2 Œ1; p� we have the embedding Lp.0; T IW �x ;p.Rd //�Lq.0; T IW �x ;q.O//.

(ii) For s > 0 we have, with p D s.m� 1/C 1 2 .1;m�,

�t D
1� s

s.m� 1/C 1
D
m�p

p

1

m� 1
; �x D

2s

s.m� 1/C 1
D
p� 1

p

2

m� 1
:

Hence, in this case the assertion follows by an application of Theorem 1.2(ii) with sufficiently small
� 2 .1; �� such that p > � and

�x <
p� �

p

2

m� 1

combined with the embedding

W �t ;p.0; T IW �x ;p.Rd //�W �t ;q.0; T IW �x ;q.O//:

If s D 0 and �t 2 Œ0; 1/, we may choose s0 > 0 such that

�t <
1� s0

s0.m� 1/C 1
DW �t .s0/;

and the result follows by the embedding

W �t .s0/;s0.m�1/C1.0; T ILs0.m�1/C1.O//�W �t ;1.0; T IL1.O//: �

Proof of Theorem 1.1. The proof is similar to that of Theorem 1.2(ii), but we discriminate between small
and large velocity contributions to the kinetic function. Let f be the kinetic function corresponding to u
and solving (1-8). We extend again to all times t 2 R by multiplying with a smooth cut-off function
' 2 C1c .0; T / with 06 ' 6 1. Further, we split f DW f <Cf > and q DW q<C q> into a small-velocity
and a large-velocity part by multiplying with a smooth cut-off function  0 respectively  1 WD 1� 0
in v. This gives rise to the two equations

@t .'f
</�mjvjm�1�x.'f

</D ' 0ıvDu.t;x/S C @v.'q
</�'q@v 0C @t'f

<;

@t .'f
>/�mjvjm�1�x.'f

>/D ' 1ıvDu.t;x/S C @v.'q
>/C'q@v 0C @t'f

>;

Integrating f < and f > in v, we obtain a decomposition of uD u<Cu>.
The proof proceeds in several steps: In first the three steps, we argue that u 2Ls.0; T ILs.Rd // for all

s 2 Œ1;mC 2=d/ if d > 2 and s 2 Œ1;mC 1/ if d D 1. With this additional bound, we can conclude the
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higher-order estimates in the last three steps of the proof. We only detail the proof for d > 2, the case
d D 1 being similar.

Step 1: In this step we establish for � 2 .m;md=.d � 2// the bound

ku<kLmt L
�
x
. ku0kL1x CkSkL1t;x C 1: (5-3)

Set g0 WD ' 0ıvDu.t;x/S C @t'f <�'q@v 0, g1 WD 'q<, and

�x WD
d

m
�
d

�
2

�
0;
2

m

�
:

Consequently, we may choose 
 2 .0; 1/ so large that

�x 2

�
0;
m� 1

m

2

m� 


�
:

From Corollary 4.5 applied with �D 1 and q Dm we obtain

k'u<kLmt W
�x;m
x
. kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ck'f <kL1t;x;v\L

1
t;x;v
Ck'u<kL1t;x\L

m
t L

1
x

. kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
C sup
t2Œ0;T �

ku.t/kL1x :

We note that since trivially f < 2 L1t;x;v with norm bounded by 1 we have by Theorem A.2

kf kL1t;x;v\L
1
t;x;v
C sup
t2Œ0;T �

ku.t/kL1x . kukL1t;x C 1C sup
t2Œ0;T �

ku.t/kL1x . ku0kL1x CkSkL1t;x C 1:

Next, we check that jvj1�
g0 2 MTV . Indeed, since jvj1�
 can be estimated by a constant on the
supports of  0 and @v 0, we may apply Lemma A.4 to the effect of

kjvj1�
g0kMTV
D kjvj1�
 .' 0ıvDu.t;x/S C @t'f

<
�'q@v 0/kMTV

. kSkL1t;x Ck@t'jujkL1t;x Ckq@v 0kMTV

. k@t'jujkL1t;x Cku0kL1x CkSkL1t;x :

Utilizing Lemma A.4 once more to the effect of

kjvj�
g1kMTV
. kjvj�
q<kMTV

. ku0kL1x CkSkL1t;x ;

we obtain by Sobolev embedding

k'u<kLmt L
�
x
. k'u<kLmt W �x;m

x
. ku0kL1x Ck@t'jujkL1t;x CkSkL1t;x C 1: (5-4)

With the same construction 'n! 1Œ0;T � as in the proof of Theorem 1.2, this gives (5-3).

Step 2: Next, we investigate u> and establish for � 2 .1;m/ and

�� D
�d.m� 1/

d.m� 1/� 2.�� 1/

the bound
ku>k

L
�
tL
��

x
. ku0kL1x CkSkL1t;x C 1: (5-5)
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Set g0 WD ' 1ıvDu.t;x/S C @t'f >C'q@v 0 and g1 WD 'q>. Choose 
 2 .1;m/ sufficiently small, so
that � 2 .1;mC 1� 
/, and define

�x WD
�� 1

�

2

m� 1
2

�
0;
�� 1

�

2

m� 


�
:

We apply Corollary 4.5 with �D 1 and q D �, which gives

k'u>kL�tW
�x;�
x
. kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ck'f >kL1t;x;v\L

1
t;x;v
Ck'u>kL1t;x\L

�
tL
1
x

. kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
C sup
t2Œ0;T �

ku.t/kL1x :

The terms involving f and u are estimated as in Step 1. Further, since jvj1�
 can be estimated by a
constant on the support of  1 and @v 0, we have by Lemma A.4

kjvj1�
g0kMTV
D kjvj1�
 .' 1ıvDu.t;x/S C @t'f

>
C'q@v 0/kMTV

. kSkL1t;x Ck@t'jujkL1t;x Ckq@v 0kMTV

. k@t'jujkL1t;x Cku0kL1x CkSkL1t;x ;

and, again due to Lemma A.4,

kjvj�
g1kMTV
. kjvj�
q>kMTV

. ku0kL1x CkSkL1t;x :

Since �� D �d=.d � �x�/, we have by Sobolev embedding W �x ;�
x � L

��

x , and hence

k'u>k
L
�
tL
��

x
. k'u>kL�tW �x;�

x
. ku0kL1x Ck@t'jujkL1t;x CkSkL1t;x C 1:

With the same construction 'n! 1Œ0;T � as before, this yields (5-5).

Step 3: In this step, we show that for s 2 Œ1;mC 2=d/ we have

kukLst;x . ku0kL1x CkSkL1t;x C 1: (5-6)

Observe that it suffices to show the assertion for s >m, since u2L1.0; T IL1.Rd // is already established
by Theorem A.2.

Define

� WD
m

mC 1� s
2

�
m;

md

d � 2

�
:

For # 2 .0; 1/, it holds ŒL1t L
1
x; L

m
t L

�
x�# D L

p#
t L

q#
x with

1

p#
D
#

m
and

1

q#
D 1�# C

#

�
:

Choosing
# WD

m�

m�C ��m
2 .0; 1/;

we obtain p# D q# D s, and hence by (5-3) and Theorem A.2

ku<kLst;x . ku
<
kL1t L

1
x
Cku<kLmt L

�
x
. ku0kL1x CkSkL1t;x C 1: (5-7)
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Next, we define

� WD
sd.m� 1/C 2

d.m� 1/C 2
2 .1;m/ and �� D

�d

d � 2.�� 1/=.m� 1/

and observe that for # 2 .0; 1/, it holds ŒL1t L
1
x; L

�
t L

��

x �# D L
p#
t L

q#
x with

1

p#
D
#

�
and

1

q#
D 1�# C

#

��
:

Choosing

# WD
�d.m� 1/

�d.m� 1/C 2.�� 1/
2 .0; 1/;

we obtain p# D q# D s, and hence by (5-5) and Theorem A.2

ku>kLst;x . ku
>
kL1t L

1
x
Cku>k

L
�
tL
��

x
. ku0kL1x CkSkL1t;x C 1: (5-8)

Combining (5-7) and (5-8), we obtain (5-6).

Step 4: In this step we argue that

k'u<kW �t ;p.W �x;p/ . k@t'jujkL1t;x Cku0k
m
L1x
CkSkm

L1t;x
C 1:

Indeed, we choose 
 2 .0; 1/ so large that

�x <
p� 2C 


p

2

m� 1

and mC1�
 <mC2=d . Then we apply Corollary 4.7 with g0 WD ' 0ıvDu.t;x/SC@t'f <�'q@v 0,
g1 WD 'q

< and Qp D p. We obtain by (4-19) some r 2 .p;mC 1� 
/ such that

k'u<kW �t ;p.W �x;p/ . kg0kMTV
Ckjvj1�
g0kMTV

Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
CkukL1tL

p
x\L

r
t;x
CkjujmkL1t;x

:

The first four terms on the right-hand side can be estimated as in Step 1 (indeed, we did not use the
coefficient jvj1�
 in the estimate of g0) via

kg0kMTV
Ckjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf kL1t;x;v\L

1
t;x;v
.k@t'jujkL1t;xCku0kL1xCkSkL1t;xC1;

while the last two terms are estimated in light of r < mC 1� 
 < mC 2=d through (5-6) as

kukL1tL
p
x\L

r
t;x
CkjujmkL1t;x

. kukLpt;x\Lrt;x Ckuk
m
Lmt;x
. ku0kmL1x CkSk

m

L1t;x
C 1:

Step 5: In this step we establish

k'u>kW �t ;p.W �x;p/ . k@t'jujkL1t;x Cku0k
m
L1x
CkSkm

L1t;x
C 1: (5-9)

Assume first p <m. Choose 
 2 .1;m/ so small that p 2 .1;mC 1� 
/ and

�t <
mC 1� 
 �p

p

1

m� 1
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and apply Corollary 4.7 with g0 WD' 1ıvDu.t;x/SC@t'f >C'q@v 0, g1 WD'q> and QpDp. Estimate
(4-19) gives

k'u>kW �t ;p.W �x;p/ . kg0kMTV
Ckjvj1�
g0kMTV

Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
CkukL1tL

p
x\L

r
t;x
CkjujmkL1t;x

:

The first four terms on the right-hand side are estimated as in Step 2 via

kg0kMTV
Ckjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf kL1t;x;v\L

1
t;x;v
.k@t'jujkL1t;xCku0kL1xCkSkL1t;xC1;

while the last two terms are estimated through (5-6) as

kukL1tL
p
x\L

r
t;x
CkjujmkL1t;x

. kukLpt;x\Lrt;x Ckuk
m
Lmt;x
. ku0kmL1x CkSk

m

L1t;x
C 1:

Hence, we have shown (5-9) in the case p 2 .1;m/. If p Dm, we choose p0 2 .1;m/ sufficiently large
such that for

�x.p0/ WD
p0� 1

p0

2

m� 1

it holds

�x.p0/�
d

p0
> �x �

d

m
:

We observe that for

�t .p0/ WD
m�p0

p0

1

m� 1

it holds

�t .p0/�
1

p0
> �t �

1

m

due to p0 <m (indeed, we have necessarily �t D 0). Choosing sufficiently large �x.p0/ < �x.p0/ and
�t .p0/ < �t .p0/, we conclude by Sobolev embedding

k'u>kLmt .W
�x;m
x / . k'u

>
kW �t .p0/;p0 .W �x.p0/;p0 /

. k@t'jujkL1t;x Cku0k
m

L1x
CkSkm

L1t;x
C 1;

which is (5-9) in the case p Dm.

Step 6: Conclusion. With the same construction 'n! 1Œ0;T � as in the proof of Theorem 1.2, Steps 4
and 5 combine to

sup
n2N

k'nukW �t ;p.W �x;p/ . sup
n2N

k'nu
<
kW �t ;p.W �x;p/C sup

n2N

k'nu
>
kW �t ;p.W �x;p/

. ku0kmL1x CkSk
m

L1t;x
C 1:

Since 'nu!u1Œ0;T � in the sense of distributions, we obtain (1-2) by the weak lower semicontinuity of the
norm inW �t ;p.0; T IW �x ;p.Rd //. Estimate (1-3) follows analogously to the proof of Corollary 1.3(ii). �
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Appendix A: Kinetic solutions

In this section we recall some details of the concept of entropy/kinetic solutions and their well-posedness
for partial differential equations of the type

@tuC divA.u/D div.b.u/ru/CS.t; x/ on .0; T /�Rdx

u.0/D u0 on Rdx ;
(A-1)

where

u0 2 L
1.Rdx /; S 2 L1.Œ0; T ��Rdx /; T > 0;

a WD A0 2 C.RIRd /\C 1.R n f0gIRd /;

b D .bjk/j;kD1;:::;d 2 C.RIS
d�d
C /\C 1.R n f0gISd�dC /:

(A-2)

Here, Sd�d
C

denotes the space of symmetric, nonnegative definite matrices. For bD .b/i;jD1;:::;d 2 Sd�dC

we set �Db1=2, that is, bi;j D
Pd
kD1 �i;k�k;j . For a locally bounded function b WR!Sd�d

C
we let ˇi;k be

such that ˇ0
i;k
.v/D�i;k.v/. Similarly, for  2C1c .Rv/ we let ˇ i;j be such that .ˇ 

i;k
/0.v/D .v/�i;k.v/.

The corresponding kinetic form of (A-1) reads, see [Chen and Perthame 2003],

L .@t ;rx; v/f .t; x; v/D @tf C a.v/ � rxf � div.b.v/rxf /

D @vqCS.t; x/ıu.t;x/Dv.v/;

where q 2MC and L is identified with the symbol

L .i�; i�; v/ WD i� C a.v/ � i� � .b.v/�; �/: (A-3)

We will use the terms kinetic and entropy solution synonymously. From [Chen and Perthame 2003] we
recall the definition of entropy/kinetic solutions to (A-1).

Definition A.1. We say that u 2 C.Œ0; T �IL1.Rd // is an entropy solution to (A-1) if the corresponding
kinetic function f satisfies:

(i) For any nonnegative  2 D.R/, k D 1; : : : ; d ,

dX
iD1

@xiˇ
 

ik
.u/ 2 L2.Œ0; T ��Rd /:

(ii) For any two nonnegative functions  1;  2 2 D.R/, k D 1; : : : ; d ,

p
 1.u.t; x//

dX
iD1

@xiˇ
 2
ik
.u.t; x//D

dX
iD1

@xiˇ
 1 2
ik

.u.t; x// a.e.

(iii) There are nonnegative measures m; n 2MC such that, in the sense of distributions,

@tf C a.v/ � rxf � div.b.v/rxf /D @v.mCn/C ıvDu.t;x/S on .0; T /�Rdx �Rv;
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where n is defined by Z
 .v/n.t; x; v/ dv D

dX
kD1

� dX
iD1

@xiˇ
 

ik
.u.t; x//

�2
for any  2 D.R/ with  > 0.

(iv) We have Z
.mCn/ dx dt 6 �.v/ 2 L10 .R/;

where L10 is the space of L1-functions vanishing for jvj !1.

The well-posedness of entropy solutions to (A-1) follows along the same lines as [Chen and Perthame
2003]. In this form, it can be found in [Gess 2020].

Theorem A.2. Let u0 2 L1.Rd / and S 2 L1.Œ0; T ��Rd /. Then there is a unique entropy solution u to
(A-1) satisfying u 2 C.Œ0; T �IL1.Rd //. For two entropy solutions u1, u2 with initial conditions u10; u

2
0

and forcing S1; S2 we have

sup
t2Œ0;T �

ku1.t/�u2.t/kL1.Rd / 6 ku10�u
2
0kL1.Rd /CkS

1
�S2kL1.Œ0;T ��Rd /:

Furthermore, the following a priori estimate was given in Lemma 2.3 in [Gess 2020].

Lemma A.3. Let u be the unique entropy solution to (A-1) with u0 2 .L1 \ L2�
 /.Rdx / and S 2
.L1\L2�
 /.Œ0; T ��Rdx / for some 
 2 .�1; 1/. Then, there is a constant C D C.T; g/> 0 such that

sup
t2Œ0;T �

ku.t/k
2�


L
2�

x

C .1� 
/

Z T

0

Z
RdC1

jvj�
q dv dx dr 6 C.ku0k2�

L
2�

x

CkSk
2�


L
2�

t;x

/:

In the case of L1 initial data a different proof for the existence of singular moments of the kinetic
measure q is needed.

Lemma A.4. Let u be the unique entropy solution to (A-1) with u0 2 L1.Rdx / and S 2 L1.Œ0; T ��Rdx /.
Then, the map

v 7!

Z T

0

Z
Rdx

q.r; x; v/ dx dr

is continuous and, for all v0 2 Rv, we haveZ T

0

Z
Rdx

q.r; x; v0/ dx dr 6
Z

Rdx

.sgn.v0/.u0� v0//C dxC
Z T

0

Z
Rdx

sgnC.sgn.v0/.u� v0//S dx dr

6
Z

Rdx

ju0j dxC
Z T

0

Z
Rdx

jS j dx dr: (A-4)

Proof. In the proof, we use the short-hand notation Ng.v/ WD
R T
0

R
Rdx
g.r; x; v/ dx dr for a generic g W

.r; x; v/ 7! g.r; x; v/. We first argue that Nq has left and right limits. Indeed, by a standard approximation
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argument, the kinetic formulation yields, for every � 2 C1c .Rv/,Z
Rv

�0 Nq dv D�
Z

Rv

�

�Z
Rdx

f dxjT0

�
dvC �.u/S

D�

Z
Rv

�

�Z
Rdx

f dxjT0

�
dvC

Z
Rv

�0 1v<uS dv: (A-5)

Since v 7!
R

Rdx
f .r; x; v/ dxjT0 is in L1.Rv/, this implies Nq � 1v<uS 2 PW 1;1.Rv/. Since 1v<uS 2

BVloc.Rv/, this shows Nq 2 BVloc.Rv/ and thus the existence of left and right limits.

Next we claim that (A-5) continues to holds for all � 2 C1.Rv/ with �0 2 C1c .Rv/. For R > 0 let
'R 2 C

1
c .Rv/ be such that 'R.v/D 1 for jvj6R, supp'R � Œ�.RC 1/; RC 1� and j'RjC j'0Rj. 1.

Defining �R WD �'R, we have by (A-5)Z
Rv

.�0'RC �'
0
R/ Nq dv D�

Z
Rv

�R

�Z
Rdx

f dxjT0

�
dvC �R.u/S:

Since �R is uniformly bounded in R, �R! � locally uniformly, v 7!
R

Rdx
f .r; x; v/ dxjT0 is in L1.Rv/

and S 2L1.Œ0; T ��Rdx /, we may take the limit R!1 on the right-hand side by dominated convergence.
Again by dominated convergence the contribution from the term �0'R to the left-hand side converges,
since �0 has compact support and Nq 2 BVloc.Rv/� L

1
loc.Rv/. Moreover, the contribution from the term

�'0R vanishes for R!1, since both � and '0R are bounded, supp'0R � Œ�.RC 1/;�R�[ ŒR;RC 1�
and Nq 2 L10 .Rv/ by Definition A.1(iv).

We are now in the position to conclude. Assume first v0 2 RC. Let �˙ 2 C1c .Rv/ with �˙ > 0,
supp�C � Œ0; 1�, supp�� � Œ�1; 0�,

R
Rv
�˙ dv D 1 and define �"

˙
.v/ D "�1�˙."

�1v/ for " > 0.
Moreover let �"

˙
be such that .�"

˙
/0.v/D �"

˙
.v � v0/ and .�"

˙
/.v0/D 0. Observe that .�"

˙
/0! ıvDv0

and �"
˙
.v/! sgnC.v� v0/ as "& 0 independent of the choice of ˙. Choosing now � WD �"

˙
in (A-5)

and using dominated convergence to take the limit "& 0, we obtain

Nq.v0˙/D�

Z
Rdx

.u� v0/C dxjT0 C
Z T

0

Z
Rdx

sgnC.u� v0/S dx dr

6
Z

Rdx

.u0� v0/C dxC
Z T

0

Z
Rdx

sgnC.u� v0/S dx dr:

In particular Nq.v0�/ D Nq.v0C/, so that Nq is continuous. The case v0 2 R� is treated analogously
replacing the conditions �˙ > 0 and

R
Rv
�˙ dvD 1 by �˙ 6 0 and

R
Rv
�˙ dvD�1, respectively, so that

�"
˙
.v/! sgnC.v� v0/ is replaced by �"

˙
.v/! sgnC.�.v� v0//. �

Appendix B: Fourier multipliers

In this section, we provide some Fourier multiplier results well-adapted to our averaging lemma,
Lemma 4.2. We recall the definition of PRdC1 and of the functions �l and 'j given in Section 2, and
define Q�l WD �l�1C�lC�lC1 and Q'j WD 'j�1C'j C'jC1. We observe Q�l.2l � /D Q�0 and Q'.2j � /D Q'0.
Moreover, Q�l and Q'j are identically unity on the support of �l and 'j , respectively.
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Theorem B.1. Let k D 2C2Œ1Cd=2�. Let m W PRdC1! C be k-times differentiable and such that for all
˛ D .˛� ; ˛�/ 2 N0 �Nd0 with j˛j6 k there is a constant C˛ such that for all .�; �/ 2 PRdC1

j@˛�� @
˛�
�
m.�; �/j6 C˛j� j�˛� j�j�j˛� j: (B-1)

Then there is a constant C > 0, depending only on the constants C˛ , such that for any p 2 Œ1;1� and all
l; j 2 Z, we have

k Q�l Q'jmkMp 6 C I (B-2)

i.e., Q�l Q'jm (more precisely the mapping .�; �/ 7! Q�l.�/ Q'j .�/m.�; �/) extends to an Lpt;x-multiplier with
a norm independent of l and j . Furthermore, this mapping extends to an MTV -multiplier with the same
norm bound.

Proof. Since k � kMp 6 k � kM1 , it suffices to estimate the L1 multiplier norm of Q�l Q'jm in order to obtain
(B-2). Since multiplier norms are invariant under dilation and since kmkM1 is equal to the total mass of
F�1m, see [Bergh and Löfström 1976, Theorem 6.1.2], we have

k Q�l Q'jmkM1 D kQ�0 Q'0ml;j kM1 D kF�1t;x Q�0 Q'0ml;j kL1t;x
;

where ml;j .�; �/ WDm.2l�; 2j �/. Let M WD Œ1C d=2�. We observe

.1C t2/.1Cjxj2/MF�1t;x Œ Q�0 Q'0ml;j �.t; x/

D cd

Z
Rt�Rdx

.id� @2� /.id���/
M .eit�Cix��/ Q�0.�/ Q'0.�/m.2

l�; 2j �/ d� d�

D cd

Z
Rt�Rdx

eit�Cix��.id� @2� /.id���/
M . Q�0.�/ Q'0.�/m.2

l�; 2j �// d� d�

D

X
˛�Cˇ�62

j˛� jCjˇ� j62M

cd;˛;ˇ2
lˇ�2j jˇ� j

Z
Rt�Rdx

eit�Cix��@˛�� Q�0.�/@
˛�
�
Q'0.�/@

ˇ�
� @

ˇ�
�
m.2l�; 2j �/ d� d�;

where cd and cd;˛;ˇ are constants that do not depend on l and j . On supp Q�0 � supp Q'0 we have
j@
ˇ�
� @

ˇ�
�
m.2l�; 2j �/j6 Cˇ2�lˇ�2�j jˇ� j, and hence we obtain

.1C t2/.1Cjxj2/M jF�1t;x Œ Q�0 Q'0ml;j �.t; x/j6 c:

Since 2M > d , it follows kF�1t;x Œ Q�0 Q'0ml;j �kL1t;x 6 C , which yields (B-2). In particular, Q�l Q'jm is an
L1-multiplier with a norm bound independent of l and j , and as such extends to a multiplier on MTV

with the same norm bound. �

Remark B.2. In Theorem B.1, the assumptions on the differentiability of m may be relaxed: Indeed, the
proof shows that it suffices to assume that m is a continuous function such that @˛�� m, @˛x

�
m and @˛�� @

˛x
�
m

exist for all ˛ D .˛� ; ˛�/ with ˛� 6 2 and j˛� j6 2Œ1C d=2�, and that (B-1) holds for these choices of ˛.

Remark B.3. Clearly, Theorem B.1 has an isotropic variant; see [Bahouri, Chemin, and Danchin 2011,
Lemma 2.2]. More precisely, a simple adaptation of the proof shows the following: Let k D 2Œ1C d=2�.
Let m W Rd n f0g ! C be k-times differentiable and such that for all ˛ 2 Nd0 with j˛j 6 k there is a
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constant C˛ such that for all � 2 Rd n f0g we have j@˛m.�/j6 C˛j�j�j˛j. Then there is a constant C > 0,
depending only on the constants C˛ such that for any p 2 Œ1;1� and all j 2 Z we have k Q'jmkMp 6 C .
Again, Q'jm extends to an MTV -multiplier (in �) with the same norm bound.

Lemma B.4. Let L be defined as in (4-2) and fix ˛ D .˛� ; ˛�/ 2 N0 � Nd0 . Then we have for all
.�; �; v/ 2 PRdC1 �R the estimateˇ̌̌̌

@˛�� @
˛�
�

1

L .i�; i�; v/

ˇ̌̌̌
.

1

jL .i�; i�; v/j
j� j�˛� j�j�j˛� j:

Proof. The proof rests on the identity

@
˛�
�

1

L .i�; i�; v/
D

X
ˇ

cˇ
�ˇ jvj.m�1/Nˇ

L .i�; i�; v/1CNˇ
;

where cˇ are constants, Nˇ WD .j˛� jC jˇj/=2, and the sum runs over those ˇ 2 Nd0 with jˇj6 j˛� j such
that j˛� jC jˇj is even. The identity can be proven easily by induction on the order of ˛� . From this and
@�L .i�; i�; v/D i , it immediately followsˇ̌̌̌

@˛�� @
˛�
�

1

L .i�; i�; v/

ˇ̌̌̌
.
X
ˇ

ˇ̌̌̌
�ˇ jvj.m�1/Nˇ

L .i�; i�; v/1C˛�CNˇ

ˇ̌̌̌
;

which in view of

j�jjˇ jjvj.m�1/Nˇ

jL .i�; i�; v/jNˇ
6
j�jjˇ jjvj.m�1/Nˇ

.jvjm�1j�j2/Nˇ
D j�j�.2Nˇ�jˇ j/ D j�j�j˛� j

and
1

jL .i�; i�; v/j˛�
6 j� j�˛�

yields the assertion. �

Acknowledgments

Gess acknowledges financial support by the Max Planck Society through the Max Planck Research Group
“Stochastic partial differential equations” and by the DFG through the CRC “Taming uncertainty and
profiting from randomness and low regularity in analysis, stochastics and their applications”. Research of
Tadmor was supported in part by NSF grants DMS16-13911, RNMS11-07444 (KI-Net) and ONR grant
N00014-1812465. The hospitality of Laboratoire Jacques-Louis Lions in Sorbonne University and its
support through ERC grant 740623 under the EU Horizon 2020 is gratefully acknowledged.

References

[Aronson and Bénilan 1979] D. G. Aronson and P. Bénilan, “Régularité des solutions de l’équation des milieux poreux dans RN ”,
C. R. Acad. Sci. Paris Sér. A-B 288:2 (1979), A103–A105. MR Zbl

[Arsénio and Masmoudi 2019] D. Arsénio and N. Masmoudi, “Maximal gain of regularity in velocity averaging lemmas”, Anal.
PDE 12:2 (2019), 333–388. MR Zbl

http://msp.org/idx/mr/524760
http://msp.org/idx/zbl/0397.35034
http://dx.doi.org/10.2140/apde.2019.12.333
http://msp.org/idx/mr/3861894
http://msp.org/idx/zbl/1404.35076


OPTIMAL REGULARITY IN TIME AND SPACE FOR THE POROUS MEDIUM EQUATION 2479

[Bahouri, Chemin, and Danchin 2011] H. Bahouri, J.-Y. Chemin, and R. Danchin, Fourier analysis and nonlinear partial
differential equations, Grundlehren der Math. Wissenschaften 343, Springer, 2011. MR Zbl

[Bénilan and Crandall 1981] P. Bénilan and M. G. Crandall, “Regularizing effects of homogeneous evolution equations”,
pp. 23–39 in Contributions to analysis and geometry (Baltimore, MD, 1980), edited by D. N. Clark et al., Johns Hopkins Univ.
Press, Baltimore, MD, 1981. MR Zbl

[Bergh and Löfström 1976] J. Bergh and J. Löfström, Interpolation spacesW an introduction, Grundlehren der Math. Wis-
senschaften 223, Springer, 1976. MR Zbl

[Bögelein, Duzaar, Korte, and Scheven 2019] V. Bögelein, F. Duzaar, R. Korte, and C. Scheven, “The higher integrability of
weak solutions of porous medium systems”, Adv. Nonlinear Anal. 8:1 (2019), 1004–1034. MR Zbl

[Chen and Perthame 2003] G.-Q. Chen and B. Perthame, “Well-posedness for non-isotropic degenerate parabolic-hyperbolic
equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire 20:4 (2003), 645–668. MR Zbl

[Crandall and Pierre 1982a] M. Crandall and M. Pierre, “Regularizing effects for ut CA'.u/D 0 in L1”, J. Funct. Anal. 45:2
(1982), 194–212. MR Zbl

[Crandall and Pierre 1982b] M. G. Crandall and M. Pierre, “Regularizing effects for ut D �'.u/”, Trans. Amer. Math. Soc.
274:1 (1982), 159–168. MR Zbl

[Crandall, Pazy, and Tartar 1979] M. G. Crandall, A. Pazy, and L. Tartar, “Remarks on generators of analytic semigroups”, Israel
J. Math. 32:4 (1979), 363–374. MR Zbl

[DeVore and Petrova 2001] R. DeVore and G. Petrova, “The averaging lemma”, J. Amer. Math. Soc. 14:2 (2001), 279–296. MR
Zbl

[DiPerna, Lions, and Meyer 1991] R. J. DiPerna, P.-L. Lions, and Y. Meyer, “Lp regularity of velocity averages”, Ann. Inst. H.
Poincaré Anal. Non Linéaire 8:3-4 (1991), 271–287. MR Zbl

[Ebmeyer 2005] C. Ebmeyer, “Regularity in Sobolev spaces for the fast diffusion and the porous medium equation”, J. Math.
Anal. Appl. 307:1 (2005), 134–152. MR Zbl

[Gess 2020] B. Gess, “Optimal regularity for the porous medium equation”, J. Eur. Math. Soc. (online publication October
2020).

[Gianazza and Schwarzacher 2019] U. Gianazza and S. Schwarzacher, “Self-improving property of degenerate parabolic
equations of porous medium-type”, Amer. J. Math. 141:2 (2019), 399–446. MR Zbl

[Golse and Perthame 2013] F. Golse and B. Perthame, “Optimal regularizing effect for scalar conservation laws”, Rev. Mat.
Iberoam. 29:4 (2013), 1477–1504. MR Zbl

[Golse and Saint-Raymond 2004] F. Golse and L. Saint-Raymond, “The Navier–Stokes limit of the Boltzmann equation for
bounded collision kernels”, Invent. Math. 155:1 (2004), 81–161. MR Zbl

[Golse, Lions, Perthame, and Sentis 1988] F. Golse, P.-L. Lions, B. Perthame, and R. Sentis, “Regularity of the moments of the
solution of a transport equation”, J. Funct. Anal. 76:1 (1988), 110–125. MR Zbl

[Jabin 2009] P.-E. Jabin, “Averaging lemmas and dispersion estimates for kinetic equations”, Riv. Mat. Univ. Parma .8/ 1 (2009),
71–138. MR Zbl

[Jabin and Vega 2004] P.-E. Jabin and L. Vega, “A real space method for averaging lemmas”, J. Math. Pures Appl. .9/ 83:11
(2004), 1309–1351. MR Zbl

[Lions, Perthame, and Souganidis 1996] P.-L. Lions, B. Perthame, and P. E. Souganidis, “Existence and stability of entropy
solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates”, Comm. Pure Appl.
Math. 49:6 (1996), 599–638. MR Zbl

[Lions, Perthame, and Tadmor 1994a] P.-L. Lions, B. Perthame, and E. Tadmor, “A kinetic formulation of multidimensional
scalar conservation laws and related equations”, J. Amer. Math. Soc. 7:1 (1994), 169–191. MR Zbl

[Lions, Perthame, and Tadmor 1994b] P.-L. Lions, B. Perthame, and E. Tadmor, “Kinetic formulation of the isentropic gas
dynamics and p-systems”, Comm. Math. Phys. 163:2 (1994), 415–431. MR Zbl

[Nikolsky 1962] S. M. Nikolsky, “Boundary properties of differentiable functions of several variables”, Dokl. Akad. Nauk SSSR
146 (1962), 542–545. In Russian; translated in Sov. Math. Dokl. 3 (1962), 1357–1360. MR Zbl

http://dx.doi.org/10.1007/978-3-642-16830-7
http://dx.doi.org/10.1007/978-3-642-16830-7
http://msp.org/idx/mr/2768550
http://msp.org/idx/zbl/1227.35004
http://msp.org/idx/mr/648452
http://msp.org/idx/zbl/0556.35067
http://dx.doi.org/10.1007/978-3-642-66451-9
http://msp.org/idx/mr/0482275
http://msp.org/idx/zbl/0344.46071
http://dx.doi.org/10.1515/anona-2017-0270
http://dx.doi.org/10.1515/anona-2017-0270
http://msp.org/idx/mr/3918415
http://msp.org/idx/zbl/1414.35111
http://dx.doi.org/10.1016/S0294-1449(02)00014-8
http://dx.doi.org/10.1016/S0294-1449(02)00014-8
http://msp.org/idx/mr/1981403
http://msp.org/idx/zbl/1031.35077
http://dx.doi.org/10.1016/0022-1236(82)90018-0
http://msp.org/idx/mr/647071
http://msp.org/idx/zbl/0483.35076
http://dx.doi.org/10.2307/1999502
http://msp.org/idx/mr/670925
http://msp.org/idx/zbl/0508.35043
http://dx.doi.org/10.1007/BF02760465
http://msp.org/idx/mr/571090
http://msp.org/idx/zbl/0436.47028
http://dx.doi.org/10.1090/S0894-0347-00-00359-3
http://msp.org/idx/mr/1815213
http://msp.org/idx/zbl/1001.35079
http://dx.doi.org/10.1016/S0294-1449(16)30264-5
http://msp.org/idx/mr/1127927
http://msp.org/idx/zbl/0763.35014
http://dx.doi.org/10.1016/j.jmaa.2005.01.009
http://msp.org/idx/mr/2138980
http://msp.org/idx/zbl/1065.35155
http://dx.doi.org/10.4171/JEMS/1014
http://dx.doi.org/10.1353/ajm.2019.0009
http://dx.doi.org/10.1353/ajm.2019.0009
http://msp.org/idx/mr/3928041
http://msp.org/idx/zbl/1418.35057
http://dx.doi.org/10.4171/RMI/765
http://msp.org/idx/mr/3148612
http://msp.org/idx/zbl/1288.35343
http://dx.doi.org/10.1007/s00222-003-0316-5
http://dx.doi.org/10.1007/s00222-003-0316-5
http://msp.org/idx/mr/2025302
http://msp.org/idx/zbl/1060.76101
http://dx.doi.org/10.1016/0022-1236(88)90051-1
http://dx.doi.org/10.1016/0022-1236(88)90051-1
http://msp.org/idx/mr/923047
http://msp.org/idx/zbl/0652.47031
https://tinyurl.com/jabinaver
http://msp.org/idx/mr/2597793
http://msp.org/idx/zbl/1190.35152
http://dx.doi.org/10.1016/j.matpur.2004.03.004
http://msp.org/idx/mr/2096303
http://msp.org/idx/zbl/1082.35043
http://dx.doi.org/10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5
http://dx.doi.org/10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5
http://msp.org/idx/mr/1383202
http://msp.org/idx/zbl/0853.76077
http://dx.doi.org/10.2307/2152725
http://dx.doi.org/10.2307/2152725
http://msp.org/idx/mr/1201239
http://msp.org/idx/zbl/0820.35094
http://dx.doi.org/10.1007/BF02102014
http://dx.doi.org/10.1007/BF02102014
http://msp.org/idx/mr/1284790
http://msp.org/idx/zbl/0799.35151
http://msp.org/idx/mr/0143064
http://msp.org/idx/zbl/0196.44302


2480 BENJAMIN GESS, JONAS SAUER AND EITAN TADMOR

[Nikolsky 1963a] S. M. Nikolsky, “Functions with dominant mixed derivative, satisfying a multiple Hölder condition”, Sibirsk.
Mat. Ž. 4:6 (1963), 1342–1364. In Russian; translated in Amer. Math. Soc. Transl. (2) 102 (1973), 27–51. MR Zbl

[Nikolsky 1963b] S. M. Nikolsky, “Stable boundary-value problems of a differentiable function of several variables”, Mat. Sb.
.N.S./ 61:2 (1963), 224–252. In Russian. MR

[Perthame 2002] B. Perthame, Kinetic formulation of conservation laws, Oxford Lect. Series Math. Appl. 21, Oxford Univ.
Press, 2002. MR Zbl

[Schmeisser and Triebel 1987] H.-J. Schmeisser and H. Triebel, Topics in Fourier analysis and function spaces, Wiley, Chichester,
UK, 1987. MR Zbl

[Tadmor and Tao 2007] E. Tadmor and T. Tao, “Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear
PDEs”, Comm. Pure Appl. Math. 60:10 (2007), 1488–1521. MR Zbl

[Triebel 1977a] H. Triebel, “General function spaces, III: Spaces Bg.x/p;q and F g.x/p;q , 1 < p <1: basic properties”, Anal. Math.
3:3 (1977), 221–249. MR Zbl

[Triebel 1977b] H. Triebel, “General function spaces, IV: Spaces Bg.x/p;q and F g.x/p;q , 1 < p <1: special properties”, Anal.
Math. 3:4 (1977), 299–315. MR Zbl

[Vázquez 2007] J. L. Vázquez, The porous medium equation: mathematical theory, Oxford Univ. Press, 2007. MR Zbl

Received 19 Apr 2019. Revised 30 Jul 2019. Accepted 26 Sep 2019.

BENJAMIN GESS: bgess@mis.mpg.de
Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

and

Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany

JONAS SAUER: jonas.sauer@mis.mpg.de
Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

EITAN TADMOR: tadmor@umd.edu
Department of Mathematics, Institute for Physical Science and Technology, University of Maryland, College Park, MD,
United States

mathematical sciences publishers msp

http://msp.org/idx/mr/0160108
http://msp.org/idx/zbl/0271.46027
http://mi.mathnet.ru/eng/msb4569
http://msp.org/idx/mr/0156182
http://msp.org/idx/mr/2064166
http://msp.org/idx/zbl/1030.35002
http://msp.org/idx/mr/891189
http://msp.org/idx/zbl/0661.46025
http://dx.doi.org/10.1002/cpa.20180
http://dx.doi.org/10.1002/cpa.20180
http://msp.org/idx/mr/2342955
http://msp.org/idx/zbl/1131.35004
http://dx.doi.org/10.1007/BF02297695
http://msp.org/idx/mr/628468
http://msp.org/idx/zbl/0374.46027
http://dx.doi.org/10.1007/BF01906640
http://msp.org/idx/mr/628469
http://msp.org/idx/zbl/0374.46028
http://msp.org/idx/mr/2286292
http://msp.org/idx/zbl/1107.35003
mailto:bgess@mis.mpg.de
mailto:jonas.sauer@mis.mpg.de
mailto:tadmor@umd.edu
http://msp.org


ANALYSIS & PDE
Volume 13 No. 8 2020

2259Propagation properties of reaction-diffusion equations in periodic domains
ROMAIN DUCASSE

2289An elementary approach to free entropy theory for convex potentials
DAVID JEKEL

2375Parametrix for a semiclassical subelliptic operator
HART F. SMITH

2399On the propagation of regularity for solutions of the dispersion generalized Benjamin–Ono
equation

ARGENIS J. MENDEZ

2441Optimal regularity in time and space for the porous medium equation
BENJAMIN GESS, JONAS SAUER and EITAN TADMOR

A
N

A
LY

SIS
&

PD
E

Vol.13,
N

o.8
2020


	1. Introduction
	2. Preliminaries, notation and function spaces
	3. Optimality of estimates via scaling
	4. Averaging lemma approach
	5. Application to porous medium equations
	Appendix A. Kinetic solutions
	Appendix B. Fourier multipliers
	Acknowledgments
	References
	
	



