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Regularity estimates in time and space for solutions to the porous medium equation are shown in the scale
of Sobolev spaces. In addition, higher spatial regularity for powers of the solutions is obtained. Scaling
arguments indicate that these estimates are optimal. In the linear limit, the proven regularity estimates are
consistent with the optimal regularity of the linear case.
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1. Introduction

We prove estimates on the time and space regularity of solutions to porous medium equations

du—Aul"l =8 in (0, T) xR,

u(0) =ugp in R9, (-1

where ul"! := [y~ 1y with m > 1, ug € LY(R%) and S € L1 ((0, T) x R?). Solutions to porous medium
equations are known to exhibit nonlinear phenomena like slow diffusion or filling up of holes at finite rate:
If the initial data is compactly supported, then the support of the solution evolves with a free boundary
that has finite speed of propagation. The solution close to the boundary is not smooth even for smooth
initial data and zero forcing.

Despite many works on the problem of regularity of solutions to porous medium equations, until
recently, established regularity results in the literature in terms of Holder or Sobolev spaces were restricted
to spatial differentiability of order less than 1; see [Ebmeyer 2005; Tadmor and Tao 2007]. For m \ 1
this is in stark contrast to the limiting case m = 1, where u is up to twice weakly differentiable in space.
Very recently, the first author has proven optimal spatial regularity for (1-1) in [Gess 2020] for initial data
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up € (L' N L'1#)(R?) for some ¢ > 0. This leaves open three main aspects addressed in the present
work: first, the derivation of optimal! space-time regularity, second, the limit case ug € L! (R%), which
is of particular importance since it covers the case of the Barenblatt solution for which the estimates are
shown to be optimal, see Section 3 below, and third, higher-order integrability. Solving these three open
problems is the purpose of the present paper.

The first main result provides optimal space-time regularity for L! data.

Theorem 1.1. Ler ug € LY(R?), S € LY((0,T) x R%) and m € (1, 00). Let u be the unique entropy
solution to (1-1) on [0, T] x R4,
(i) Let p € (1, m] and define
m—p 1 p—1 2
Kpi= e kg i=
p m—1 p m-—1
Then for all 6¢ € [0, k) U {0} and o5 € [0, k) we have
u e WP, T; WoxP(RY)).

Moreover, we have the estimate
u . . . < luoll¥y + IS o+ 1. 1-2
| ||W<Tz 2(0,T;Wox.P(R4)) | 0||[)1C ISl Ll (1-2)

(ii) Suppose ¢ @ R?. Let s € [0, 1] and define

1—s 2s
- s(m—1)+1’ x = sm—1)+1
Then for all 6; € [0, k;) U{0}, ox €[0,kx) U{0} and g € [1, p] we have

pi=sm—1)4+1, «;:

u € WO(0, T; Wox4(0)).

Moreover, we have the estimate
lullwor.ao,;woxa) < luoll7y +ISIT + 1. (1-3)
Ly L,,)C

In [Tadmor and Tao 2007; Ebmeyer 2005] initial data in L1 N L was considered. However, the
methods employed in these works did not allow a systematic analysis of the order of integrability of the
solutions. For example, the results of [Ebmeyer 2005] are restricted to the particular order of integrability
p = 2/(m + 1), while [Tadmor and Tao 2007] is restricted to p = 1. In the second main result we
provide a systematic treatment of higher-order integrability. In particular, this includes and generalizes
the corresponding results of [Ebmeyer 2005] in terms of regularity in Sobolev spaces.

Noting that the regularity of ul™! contains information on the time regularity of u in light of (1-1), in
addition, we analyze the spatial regularity of powers of the solution u* for u € [1, m].

Theorem 1.2. Letug € L'(RY) N LP(RY), S € L1([0, T] xR?) N LP([0, T] x R?) for some p € (1, 00)

and assume m € (1,00). Let u be the unique entropy solution to (1-1) on [0, T] x R

LOptimality is indicated by scaling arguments in Section 3 below, and the derived estimates are consistent with the optimal
space-time regularity in the linear case m = 1.
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(i) Let u € [1,m]. Then for all

—1 -1 2
pE (1,—m —i—p)’ Oy € [0, i )
M p m=2+p

M[M] e LP(O’ T, WO'x,p(Rd))’

we have

and we have the estimate
(] < wo no
u i pmdy S llu + || S + 1. 1-4

(ii) Let p € (p,m — 1 + p) and define
m—1l+p—p 1 p—p 2

Ky = , Ky = ———.
! )4 m—1 * p m—1

Then for all o; € [0, k1) and o € [0, k) we have
u € WorP(0, T; WP (RY)).
Moreover, we have the estimate
lallwor.o.1swor oy S ol o + 1S, +1. (1-5)

Much as in Theorem 1.1, if one restricts to estimates that are localized in space, the rigid interdependency
of the coefficients in Theorem 1.2 can be relaxed.

Corollary 1.3. Under the assumptions of Theorem 1.2, suppose 0 € R4.
(1) Let € [1,m]. Then for all o € [0,21/m) and q € [1,m/ ] we have
ultl e L9(0, T; W4 (0)),
and we have the estimate
BN oo iwosaon < luollf T o +ISIFY o +1. (1-6)

(ii) Let s € [0, 1] and define

( D41 1—s 2s
=s(m— , K= ————————, Ky = ——.
P ! stm—1)+1 T sm—1)+1

Then for all o; € [0,k;) U{0}, ox €[0,kx) U{0} and g € [1, p] we have
uewed(0,T; Wo1(0)).
Moreover, we have the estimate
lullworesqo.raworaon < luollfy o +ISIEy o +1. (1-7)

The methods employed in this work are inspired by [Tadmor and Tao 2007] and rely on the kinetic
form of (1-1), that is, with f(z, x,v) := 1y <y(s,x) — lv<o,

ot f —m|v|m_1Axf = dyq + S(t,x)5u(,’x)(v) (1-8)
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for a nonnegative measure ¢, which allows the use of averaging lemmas and real interpolation. There is a
relatively short yet intense history of applying such velocity-averaging techniques to deduce regularizing
effects in nonlinear PDEs — from the early works [DiPerna, Lions, and Meyer 1991; Golse, Lions,
Perthame, and Sentis 1988; Lions, Perthame, and Tadmor 1994a; 1994b; 1996] to the more recent
[Arsénio and Masmoudi 2019; DeVore and Petrova 2001; Golse and Perthame 2013; Golse and Saint-
Raymond 2004; Jabin 2009; Jabin and Vega 2004; Perthame 2002]. An essential difference to purely
spatial regularity consists in the necessity to work with anisotropic fractional Sobolev spaces, which only
in their homogeneous form are nicely adapted to the Fourier analytic methods of this work, much in
contrast to the purely spatial case in [Gess 2020]. This leads to the so-called dominating mixed anisotropic
Besov spaces introduced in [Schmeisser and Triebel 1987]. Passing from these homogeneous anisotropic
spaces to standard inhomogeneous fractional Sobolev spaces is delicate and treated in detail below. A
main ingredient in the proof of optimal regularity in [Gess 2020] was the existence of singular moments
ft’x’v |v|=¥q for y € (0, 1). This ceases to be true for general L !-initial data. This difficulty is overcome
in the present work by treating separately the degeneracy at |v| = 0 and the singularity at |v| = oo as
they appear in (1-8). This also necessitates making use of (1-8) in the case of small spatial modes £ in
order to obtain optimal time regularity; see Corollary 4.7 below.

Comments on the literature. The (spatial) regularity of solutions to porous medium equations in Sobolev
spaces has previously been considered in [Ebmeyer 2005; Gess 2020; Tadmor and Tao 2007]. Since
our main focus is on time-space regularity, we refer to [Gess 2020] for a more detailed account on the
available literature in this regard.

In the case of nonnegative solutions the spatial regularity of special types of powers of solutions
has been investigated in the literature. For example, much work is devoted to the pressure defined by
vi=(m/(m— D)u™1; see, e.g., [Vazquez 2007]. In the recent work [Gianazza and Schwarzacher 2019]
the authors proved higher integrability for nonnegative, local weak solutions to forced porous medium
equations in the sense that um+1/2 ¢ LIZOJCFS((O, T), Wl; é2+8) for all £ > 0 small enough. This result was
generalized in [Bogelein, Duzaar, Korte, and Scheven 2019].

The analysis of regularity in time of solutions to porous medium equations (without forcing) has a
long history initiated in [1979] and continued in [Crandall, Pazy, and Tartar 1979; Bénilan and Crandall
1981], where it was shown that

d;u € L ((0,00); L'(RY)) (1-9)

for ug € L' (R?). Subsequently, Crandall and Pierre [1982a; 1982b] devoted considerable effort to relaxing
the required assumptions on the nonlinearity ¥ in the case of generalized porous medium equations

du—AYu)=0 in(0,T)xR?. (1-10)

More precisely, in [Crandall and Pierre 1982a] assuming the global generalized homogeneity condition

V)
W)

for some 0 <m < M, v € {£1} and all r € R, (1-9) was recovered.

e [m, M] (1-11)
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It should be noted that the methods developed in these works are restricted to the nonforced case S = 0.
In fact, for S £ 0, the linear case m = 1 demonstrates that (1-9) should not be expected. We are not aware
of results proving regularity in time in Sobolev spaces for porous medium equations with nonvanishing
forcing. In this sense, restricting to regularity in time alone, the results of the present work can be
regarded as the (partial) extension of the results of [Aronson and Bénilan 1979; Bénilan and Crandall
1981; Crandall, Pazy, and Tartar 1979; Crandall and Pierre 1982a; 1982b] to nonvanishing forcing.

We are not aware of previous results on mixed time and space regularity in Sobolev spaces for solutions
to porous medium equations.

For simplicity of the presentation we restrict to the nonlinearity ¥ (1) = ul! in this work. However,
the methods that we present are not restricted to this case, as long as Y satisfies a nonlinearity condition
as in [Gess 2020]. In addition, by means of a velocity decomposition, i.e., writing

K K
ut,x) = Zui(t,x) = Z/(pi(v)f(t,x, v) dv,

i=1 i=1"Y
where ¢’, i =1,..., K, is a smooth decomposition of the unity, such a nonlinearity condition only needs
to be supposed locally at points of degeneracy. This is in contrast to the assumptions, such as (1-11),
supposed in the series of works [Aronson and Bénilan 1979; Bénilan and Crandall 1981; Crandall, Pazy,
and Tartar 1979; Crandall and Pierre 1982a; 1982b] mentioned above, which can be regarded as global
generalized homogeneity conditions.

Structure of this work. In Section 2 we collect information on the class of homogeneous and inhomo-
geneous anisotropic, dominating mixed-derivative spaces employed in this work. The optimality of the
obtained estimates is indicated in Section 3 by scaling arguments and by explicit computations in case of
the Barenblatt solution. In Section 4 we provide general averaging lemmas (Lemmas 4.2 and 4.4) in the
framework of homogeneous dominating mixed-derivative spaces and translate them to more standard
inhomogeneous anisotropic fractional Sobolev spaces (Corollaries 4.5, 4.6 and 4.7). In this formulation,
they imply the main result by their application to the porous medium equation in Section 5.

2. Preliminaries, notation and function spaces

We use the notation a < b if there is a universal constant C > 0 such that a < Ch. We introduce
a Z b in a similar manner, and write a ~ b if a < b and a Z b. For a Banach space X and / C R we
denote by C(I; X) the space of bounded and continuous X -valued functions endowed with the norm
I fllca;x) :== supser I f(O)llx. If X = R we write C(I). For k € N U {oo}, the space of k-times
continuously differentiable functions is denoted by C¥(I; X). The subspace of C¥(I; X) consisting of
compactly supported functions is denoted by C Ck (I; X). Moreover, we write .Z7y for the space of all
measures with finite total variation. Throughout this article we use several types of L?-based function
spaces. For a Banach space X and p € [1, oo], we endow the Bochner—Lebesgue space L?(R; X) with
the usual norm

N =

0 lrx) = ( /R T dz) ,
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with the standard modification in the case of p = oco. For k € Ng := N U {0}, the corresponding X -valued
Sobolev space is denoted by WX-P(R; X). If o € (0, 00) is noninteger (say o = k + r, with k € Ny and
r € (0, 1)), then we define the X -valued Sobolev—Slobodecki space W?-?(R; X) as the space of functions
in WkP(R; X) with

DX f(t)— D¥ f(s)||2 »
1S Noom gy = (/RXR | DX f (1) — D f(5)I1% dsdl) oo o

|t —s|rP+1

again with the usual modification in the case of p = co. Further, let WP (R; X) be the space of all locally
integrable X -valued functions f for which (2-1) is finite. If we factor out the equivalence relation ~,
where f ~ g if || f —g||W(,’p(R;X) = 0, the space WP (R; X) equipped with the norm || - ”Wf”P(R;X) is
a Banach space.

Moreover, in order to treat regularity results in both time and space efficiently, we introduce spaces
with dominating mixed derivatives set in the framework of Fourier analysis, that is, corresponding Besov
spaces. These spaces have a long history in the literature, beginning with [Nikolsky 1962; 1963a; 1963b].
We refer the reader to [Schmeisser and Triebel 1987]. We adopt the notation of [Schmeisser and Triebel
1987] for the nonhomogeneous spaces. Corresponding homogeneous Besov spaces are treated in [Triebel
1977a; 1977b]; we adapt the notation to be consistent with that of [Schmeisser and Triebel 1987]. We
recall from [Triebel 1977a] the definition of the spaces 2 and 2” replacing the standard Schwartz space
7 =.(R4*1) and the space of tempered distributions ." = .7’ (R4*1Y in the definition of homogeneous
spaces. As we are concerned with function spaces in the time variable ¢t € R and the spatial variable
x € R4, we introduce, in addition to R4 +! = R; x Rz, also the subset

R .= {(r,x) e R¥*1 : 1|x| #£ 0.

Note that in [Triebel 1977a], the notation ﬁz is used, which gives a better geometrical intuition of the set
taken out of R2. However, for typesetting reasons, we have decided on the notation R4+1 Then we let
2 be the subset of the standard space of test functions 2, consisting of functions with compact support in
R4+ and view it as a locally convex space equipped with the canonical topology. Its dual space is denoted
by &', and is referred to as distributions over RE+1 We define % as the image of & C . under the Fourier
transform .Z in time and space, equipped with the inherited topology from 2. The corresponding dual
space is denoted by 2. Since .% : 9 — %, we can define by duality the Fourier transform .% : 2/ — &',

It holds 2 C . with a continuous embedding, but the fact that 2 is not densely embedded in .7
prevents one from stating .’ C 2”. However, we note that for p € (1, 00), the space L? (R?*1) can be
viewed both as subspace of .’ and as a subspace of 2”; see Theorem 3.3 in [Triebel 1977a].

Let ¢ be a smooth function supported in the annulus {§ € R % < |&| <2} and such that

D¢i®):=) e@7E =1 forall§ R\ {0}.
jez jez
Similarly, let n be a smooth function supported in (—2, —%) U (%, 2) with

Y ()= n@')=1 forall T €R\{0}.

lez lez
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Moreover, define ¢; := ¢; for j = 1 and ¢po := 1 — ZjBI ¢j, as well as Yy := n; for [ > 1 and
Vo :=1—7 ;5 . We will use the shorthand notation 7;¢; for the function (z, &) > n;(7)@; (£), and
similarly for combinations of ¥; and ¢;.

Definition 2.1. Let 0; € (—00,00), i =t,x, and p € [1,00]. Set 6 := (07, 0x).

(1) The homogeneous Besov space with dominating mixed derivatives S g’ ooB([R”Z‘H) is given by
ST ooB =S5 BRI :={fe2: 1 sz 5 <00k

with the norm

. I j -1
1 ss 5 = sup 2020 NF @i Fex [l Lo wa+ry-
’ ’jez

Similarly, the space SI‘;’ o0, M)B(Rd *1) is given via the norm
. 1 i -1
Ifllgo g = sup 220\ T n19j Fix [l Lpoomaty.-
p.00,(00) l,jez

(i1) The homogeneous Chemin-Lerner spaces Zf nggo RA+1) and L2 Bgfoo RZ*1Y are given by

LYBYs = LB RTTY) i={f € 7" 21| [ zp g, <00},

LPBY :==LPBS (Rt :={f e I ze ger, < o0},

X7 p,o0

with the norms ] .
”f”Z,”B,‘?éo 1= sup 27 |7 0 T [l Lo wa+1y,
: jez

1l ze goc = sup 27 |77 F £l Lo a1y,
T lez
respectively.
. o . - ~ dtis o
(iii) The nonhomogeneous Besov space with dominating mixed derivatives S; ., B(R *1) is given by
SpooB = S o BRI = {f € 7' ®IH): | fllgg_p < o0},

with the norm

. l i —1
I/ llsg o8 = sup 20020 NF Vi) Frx [ | Lo @a+y-
' 3]20

(iv) The nonhomogeneous Chemin-Lerner space Zf Bgfoo (RA+1) is given by
LBy = LY Byo @) :={f € " || flr pgx, <00},

with the norm ||f||Zfnggo I=supj>o 20xJ ||§;1¢jﬁxf||Lp(Rd+1).

Remark 2.2. All spaces considered in Definition 2.1 are Banach spaces; see [Triebel 1977a]. Note that
for ¢ € R, we use the notation 96 = (o, ¥0y). In this note, we restrict ourselves to the third index
of the Besov-type space being infinity, in which case the spaces S g’ oo B are sometimes called Nikolsky
spaces of dominating mixed derivatives in the literature. However, there is no conceptual limitation to
consider also third indices ¢ € [1, 0co]. By the same token, one could also consider spaces with different

indices p and g in different directions. We refer the reader to [Schmeisser and Triebel 1987] for more
details concerning such spaces.
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Lemma 2.3. Letkx = 0 and p € [1,00]. Then
LY BRI € LP(R; W P (RY)) € LY BE< P (RITY),
whenever ¢ > 0 and § € (0, kx].
Proof. This follows from [Bahouri, Chemin, and Danchin 2011, p. 98]. O

Lemma 2.4. Let ks, kx >0and p €[1, 00). Then Sg’ooB C WOP(R; WP (R?)) whenever o; € [0, k;)
and oy € [0, ky).

Proof. The proof is a combination of results in [Schmeisser and Triebel 1987], which are written for
R x R but also true for R x R? by an inspection of their respective proofs: Without loss of general-
ity, we can assume that o; and o, are noninteger. By [loc. cit., Section 2.3.4, Remark 4], we have
WorP(R; WoxP(R?)) = SBY _: see [loc. cit., Section 2.2.1, Definition 2] for a definition of the latter

p.p’
space. Since by [loc. cit., Section 2.2.3, Proposition 2] we have S; k B CSB G this yields the claim. [

p.p’

Lemma 2.5. Let 0;,0x > 0and p €1, 00]. Then
d+1 - N a6
(LP(R¥TYNLLBS NIV B, NSS  B)=SJ B
with equivalent norms.

Proof. As smooth and compactly supported functions, Yo and ¢¢ extend to L? multipliers for all
p €[1, 00]; see, e.g., [Bergh and Lofstrom 1976].
For f € (LP(R4F1) N LY By N LY By%o N ST o, B) C .7/ (R4+1) we obtain

-1 / -1
1 llsg o8 < IFxVo¢oFixfllLr, +Sup2<’t 17 xmboFix fllLr,
’ >0

+sup2"“||4xwowjftxflle + sup 20¢120%/ IIszmerxflle
Jj>0 1,j>0

SISz, +sup 207 mF flpr
>

+sup 22|70 P Sl + S 202N s T fll Ly
Jj>0 Jj>0

< ||f||Lgx + 1 Fzego, + 1 Nzpser, + ||f||sgmB

Conversely, for f € S7 B, we estimate the four contributions corresponding to L? (RE+Y), L2 Bp 50s
Zf Bgfoo, and S zi ooB separately. We start by noting that due to 07, 0x > 0, the i 1nvar~1ance of multiplier
norms with respect to dilation, n; = n;v¥¢ for [ <0 and ¢; = @;¢o for j <0, where Yo := Yo + ¥ and
do := ¢Po + ¢1, we have

swp 2 N F m 1 Sy SNFC 0T f ey

<0

sup 2°%/ || gDJfoHLl’ S ¢0</xf||L” .
J<0
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Furthermore we use the fact that for o > 0 one has the estimate ) - |an| < sup,>¢ 2°"|a,| for any
sequence (an) C R with a constant depending on o. With this, we obtain

-1 1
1 lr, < D0 1Zidvidi Zesx f e, S sup 2% 22Tty Fex f oy, < fllsg s
1,j=0 JZ

Next, we compute
I fllze gor, \supz“fluﬁf mZ Sy, +sup2”f’||w, ViZifllpr,

sl vfo%flngersupZ‘”lllff ViZiflpr,

<D T Vo) Fux f Ly +sup22"f’|u,xwz¢mxfan

Jj=0 >0;>0
<SUP20” ||fth0¢thxf||Lp + sup 20[120)(]”/txwl¢]¢/t xf”Lp < ||f||S"
j=0 X [>0,7=0

By analogy, ||f||zthg’)éo < ||f||Sg!wB. Hence, it remains to control ”f”S;’,ooB' We split this term into
the four contributions

I I
||f||5p B = Sup 20! 20XJ||thWl¢j</txf”L” + sup 27 20%] ||=/thl‘/’th xf“L”
1,j>0 1>0,/<0

+ sup 2720\ F ey Fux fllpp A sup 2720\ e P fllpp
1<0,j>0 1,j<0

The first contribution is immediately estimated by || f || SG B For the second contribution, we have

I — I —
P 272N T g Fux fllpp | S Sup2‘” 17 xvidoFix [y <1 flsg 5
>0,;<0 ’

and a similar estimate holds for the third contribution. For the fourth contribution, we have

ZSUP 2011 p0xJ ||c/tx7ll‘Pj</t xf”L” < ||</txw0¢0ftxf||L” . O
Jj<0

3. Optimality of estimates via scaling

It is well known that in the linear case m = 1 one has estimates of the form

el it < @) oll 1 + 1Sy ). (3-1)

for all o < 2. In the case m > 1, such an estimate cannot be true for any o, > 0 anymore. Intuitively,
this is due to the linear nature of (3-1) (observe that the integrability exponent is equal on both sides of
the inequality), which is not compatible with the nonlinear equation (1-1). We will make this intuition
more precise by the following lemma based on a scaling argument.
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Lemma3.1. LetT >0, m>1, pwe[l,m], pe[l,o0) and 0¢,0 = 0. Assume that there is a constant
c=c(m,u, p,os,0x) > 0 such that

1012, o sty < CU0N L1 ety + IS 210,721 ry) (3-2)
for all solutions u to (1-1). Then
» m m _m—pp _m—p xzup—l 2 <2(M—Ut)§2_ll‘ (3-3)

$—§—, (OF RS < ) <
u+m—0o; n pm—1) m—1 p m—1 m m
In particular, ifoy = (m—u)/(m—1),then p=1and o =2(u—1)/(m —1).

m—1

Proof. For positive constants 7,y = 1 with 5 = y and a fixed triple (u, ug, S) such that u satisfies

(1-1) with initial condition u¢ and forcing S we consider the rescaled quantities (i, g, S ) defined via
(1, x) == nulyt,x), dio(x) :=nuo(x), St x):=n"S(yt,x),

where we have tacitly extended S on (7, yT) by 0. Then # satisfies (1-1) with 7y € L'(R¢) and

S e LY(0,T; L' (R?)), so that (3-2) gives

(AR

Wornoavos iy < CUHol L@y +1SL10,7:L1 @a))- (3-4)

‘We observe

~[uly P — p. o p—1 1 [u] | P
1 010 0,7 17 p ayy = Y 1 o100,y v p ety

as well as [[tio|| L1 (gay = nlluoll L1 ey and ”S:”LI(O’T;LI(Rd)) =nlSlz1(0,y7:L1 ®a))- Thus, it follows
from (3-4) that

[l 2

1— 1—
worno,riox oy S v P Mol i) + 1Sl L1,y riLt @ay)

= oy MDA DT (ug || 1 ey + IS L1, izt ey)- (B5)

As long as ug or S are nontrivial and unless
m-1)(A—-op)+1—up=0, (3-6)
this gives the contradiction u = 0 by sending n — oo (and consequently also y — c0). Since o; = 0,

(3-6) gives
m

<——— <
p+m—"Dor

[E

4

By the same token, since p = 1, (3-6) gives
o, < m—up < m—u'
pm—1) m—1

m

Next, we rescale in space. More precisely, for positive constants 1, y > 0 with n1 = = y? and a fixed

triple (u, ug, S) as above we consider the rescaled quantities (u, g, S) defined via

u(t,x):=nu(t,yx), to(x):=nue(yx), §(z,x) =nS(t, yx).
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Then # satisfies (1-1) with 7ig € L'(R9) and § € L1(0, T; LY (R?)), so that (3-2) gives

VY07, 1o potiocmaay < CUollLi@ay + 181107501 @) (3-7)

‘We have

”M[M]” = pHPyOx P~ d||u[“]||

Wor.p(0,T;Wox-P(RA)) Woi.p(0,T;Wox-P(RA))’
as well as [|iio |l 1 ey = 17~ Iluoll 11 ey and Sl 1 0.7t @ayy = 17" US I 21 0,711 (rey)- Thus, it
follows from (3-7) and the relation !~ = y? that

T, orosios. gy < M7 (ol gy + 1S 1o 7211 )
oxpin=1)
2

=cn 1P (luo | 1 gay + 1S L1 0,711 maY))- (3-8)

As long as ug or S are nontrivial and unless

oxpm—1 -1 2
L)4—1—/¢Lp=0 & o0x = il
2 )4 m—1’

(3-9)

this gives the contradiction ¥ = 0 by sending n — 0 or  — oo (and consequently y — co or y — 0,
respectively). Plugging into (3-9) the restrictions on p and o;, we obtain the result. O

Remark 3.2. Ifone sets . =1, p =1 and 0y = 0, Lemma 3.1 tells us that o, cannot be positive, which is
what we claimed following (3-1). Moreover, we emphasize that Lemma 3.1 shows that in the case of the
whole space, the regularity exponent ox € [2(iu —1)/(m — 1), 2/ m] is in a one-to-one correspondence
to the integrability exponent p € [1,m/u] via

_mup—1 12 2

o — d =_—.
p m-—1 e p 2u—ox(m—1)

The Barenblatt solution. Consider the Barenblatt solution

_1
upp(t,x):=1"%(C —klxt 2?7,
where J ( )
a(m—1 o
l, ¢a=— < =270 g2
mEL = = +2 md P

and C > 0 is a free constant. Then, for u € [1, m], u[léf] e L0, T; W™/ (R2)) implies s < 21/ m.

Proof. With F(x):=(C —k|x|2)‘_f_/(m_1) we have u[“] (t,x) =t~ F(xt~P). We next observe that,
for s € (0,1) and each ¢t = 0,

(] (1]
ey = [, D eay
Ws m/,u(Rd) R xR |x y|vm+d

t—Dtm ﬂ(vm+d)+2dﬂ” ||
Wsm/u,(Rd)

Hence,

_ sm g
ulld = ||em-BCE 2By |

Lm/i(0,T;Ws-u/m(Rd)) Ws.m/u(Rd)’
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which is finite if and only if

—oem—ﬂ(ﬂ +d) +2dB>—-1 and FeW>u[R?).
n

Hence, necessarily

1 1 dim—1 2
ma L3 gyl _dm=D+2
d\ u o d

which is equivalent to s < 2/m. In the case s € (1,2) we observe that it holds
O uldd (1, x) = 17y F(xiP),

so that analogous arguments may be applied. O

4. Averaging lemma approach

In [Gess 2020], an averaging lemma was introduced that can be applied directly to the porous medium
equations (1-1) to obtain estimates on the spatial regularity of u, but so far, no corresponding estimates
for powers of the solution u* or its time regularity could be obtained. In this section, we provide an
averaging lemma that gives a comprehensive answer to both of these questions. To this end, we recall
the definition of the anisotropic and isotropic truncation properties from [Gess 2020], which extend the
truncation property introduced in [Tadmor and Tao 2007, Definition 2.1].

Definition 4.1. (i) Let m be a complex-valued Fourier multiplier. We say that m has the truncation
property if, for any locally supported bump function ¢ on C and any 1 < p < oo, the multiplier with
symbol ¢ (m(£)/6) is an LP-multiplier as well as an .#ry-multiplier uniformly in § > 0, that is, its
L?-multiplier norm (.#Z7y-multiplier norm resp.) depends only on the support and C I size of ¥ (for
some large / that may depend on m) but otherwise is independent of §.

(i1) Let m : Rg x Ry — C be a Carathéodory function such that m (-, v) is radial for all v € R. Then m is
said to satisfy the isotropic truncation property if, for every bump function ¥ supported on a ball in C,
every bump function ¢ supported in {S eC: % <€ < 2} and every 1 < p < oo,

2
Myt = 7555 Jo (M5 ) 2o

5
is an Lfc’—multiplier forallveR, J =2/, j€Z, and, forallr > 1,

1
MMy, gllarllLy < 12m(J,8)]7,

where
J,
Qm(J,0) := {v eR: ‘m( v) € suppw}.
Here we use an abuse of notation
)| ([ mE ]
) ' ) B '
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We recall that for m(£, v) := |£|?|v], the anisotropic truncation property is satisfied uniformly in v by
Example A.2 in [Gess 2020] and the isotropic truncation property is satisfied by Example 3.2 in [Gess
2020], albeit only in the case J = 1. However, the proof given there can be used without any changes to
obtain the full assertion for general J € Z.

Lemma 4.2. Assumem € (1,00), y € (—oo,m), we[l,m+1—y)andlet f € Lﬁx’v, where B’ =1/p
with p € (0, 1), be a solution to

L0, Vi, v) f(t,x,0) = go(t, x,v) + dpg1(t, x,v) on R; X [F\Rz x Ry. 4-1)
Here, the differential operator £ (9;, V, v) that is given in terms of its symbol
Llit,iE,v) =it +|v|™ V)%, 4-2)
and g; are Radon measures satisfying

g0l (&, x, V)[V|1TY + |g1|(t, x, v) ||V € Mry (R x RE X Ry).

Suppose
-2
se(ﬁ——%lﬂ]ﬂmJ}
Then f € SI’)Z’OO’(OO)B, where f(t,x) = [ f@, x, v)[v[*Vdv, i := (ks kx) and
s(m—1)+1-y+p (I—=s)(u—14+p) 2s(u—1+p)
pi= , kpi= , Kx:i= . 4-3)
o+ (1—=p)(s(m—1)+1-—y) s(m—=1)+1-y+p s(m—=1)+1-y+p
Moreover, we have the estimate
1£0ss 5 SI 7 gollary + 101 gtllary +1F s (44

If additionally f € LY ., p # r €1, 00, then for all q € (min{p, r}, max{p.r}) it holds [ € SP%_ B,

where © € (0, 1) is such that
1 1-9

04
+ —.
r p
In this case we have

IIfIISggOB Sl goll.ary + 1017 g1l + Iflps  + 1y - (4-5)

Finally, if s = 1 and consequently k; = 0, then (4-5) remains true if we replace the space S ,}9, ’;‘X)B =
S0 ) B by LIBYSS.
Remark 4.3. Observe that for
m+l—y—u
el ————,1
m+1—y
one may prescribe a specific integrability exponent. More precisely, given

. [ l—y+p m+1—yi| ( m+1—yi|
pe , n(1, ——=
pp+ (L=p)(1=y) 7 W
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choose

_mpp+pA—p)d-y)—l+ty+p (M—Z‘H/
(m—1)(1—p(—p)

Then (4-3) reads p = p, as well as
m+p—y—pupp+p(l—p)(y—m) 1

, 1} n 1o, 1].

m —

Kt = )

pp m—1
_wpp+p(d—p)—y)—1+y—p 2

X - plo m_l.

Observe that in the limiting case p — 1 and y — 1, these orders of differentiability correspond to the
ones found in (3-3).

Proof of Lemma 4.2. We first assume that f is compactly supported with respect to the variable v. This
condition will enter only qualitatively, and never appears in quantitative form. Therefore, at the end of
the proof, we can again remove this additional assumption.

Since we are interested in regularity in terms of homogeneous Besov spaces, we decompose f into
Littlewood—Paley blocks with respect to the ¢-variable and the x-variable. Let {n;};<7 be a partition of
unity on R\ {0} and {¢; } ez a partition of unity on R4 \ {0} as in Section 2. Then we define for [, j € Z

fl —ftx[ﬂlethf]

where .Z; x f1, (. &, v) is supported on frequencies |§] ~ 27, |t| ~ 2! forl, j € Z. Similarly, we define
the decompositions g ;. ; and g1, ; of go and g1, respectively. We consider a microlocal decomposition
of f; ; connected to the degeneracy of the operator .2 (d;, Vx,v). Let o € C2°(R) be a smooth function
supported in B,(0) and set 1 := 1 — 9. For § > 0 to be specified later we write

2 2
P L P LS Py s

Since f is a solution to (4-1), we have

2
F L IE ) F e f) (0 0) = F7 ('””5' )Jx(gm,(t x.0) + Bugr s 0., v)) (46)
and thus

2 1
v =zt (PR ) s

1 vl €|
tFix 1( 5 ).i”(zrzév)

= S (6%, 0) + £, x, ). 4-7)

In conclusion, we have arrived at the decomposition

fz,j3=/ﬁ,j|v|“_1d0=/fl?j|vl”_1 dv+/fz?j|v|u_l dv+/fz?ﬂvw_ld”=‘ﬂ?j+ﬂ?j+ﬁ?j'

We aim to estimate the regularity of these three contributions separately.

Tt x Ugllj([ X,v)
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Step 1: f° We note that we have the estimate ||.#; 11,7 f || Lf, S| LA, with a constant independent
of [, since ||\n;|| 4,8 = lInoll 48 <oo.Letl, j € Zbe arbltrary, fixed. Then we have that [v| <2-272/§
on the support of (277 £)yo(|v||€]%/8), so that |2, (27, 8)| < [[-2-272/8,2-272/8]| <272/ §. Hence,
by the isotropic truncation property and Minkowski’s and Holder’s inequality it holds

2
”/f[?j|v|u_l dv “ (|U||E| )|v|,u—lﬂxfl’j dv
2
5/”9‘;1%(—“)'?' [

M—l v 2
Ll Hﬁ (%)W

L

t.x

dv

LB

t.x

M .
Mg sl

-1 . 1 u—1+p
J B N
Qm@ O I fllps < (22j) 1 lls s

where we have used B/ = 1/p.

Step 2: f2 Letl, j € Z be arbitrary, fixed. Since s € [0, 1], we clearly have
o' P < 2 ig vl

Moreovgr, in light of s > p—2+y/(m—1) we have on the support of n;¢; ¥1(|v]|£|?/8) (so that || ~ 2!
€] ~ 2/, and |v] 2 27%/§)
|vlu—2+y |U|M—2+y (2—2j5)u—2+y—s(m—1) 22j(s(m—2)—u+2—y)
< =
|$(ir,i"§, v)| ~ |T|1—s|v|s(m—1)|$|2s ~ 2l(1—s5)02js §sm—1)—u+2—y2l(1—s)"

Hence, by Theorem B.1 and Lemma B.4, [v|#™2%7 / £ (i, i, v) acts on the support of n;¢; 1 (|v] |€]?/8)
as a constant multiplier of order
22j(s(m—2)—p+2—-y)
§sm—D)—u+2-yIl(1—-s)"

Consequently, by the anisotropic truncation property
2 nw—2+y
2 n—1 _ a—1 |v||§| |v| P 1-y
v dv = F Frx|v i dv
[rrra] =] [oin (M) S o e,
22j(s(m—=2)—p+2-y)

~ §sm—1)—pu+2—yol(1-s)

t.x

1—
vl gollazy -
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Here, we have used that with o (|v||£|?/8) also

wl(lvl(lgélz) =1_1//0(|v|(|;§|2)

is a bounded .#7y -multiplier independent of § > 0.

Step 3: f3. Let [, j € Z arbitrary, fixed. We observe (recall Z(it,i§,v) =it + |v|""!|£]?)

_ _i (I0lIEP\ sen@)[EF v~
[t an=— [ (S5 P i ey s o

2 n—2
_(M_l)/*jtxw (|v||$| )Sag;((lvr)ljgl )Jt,xgl,l,j dv

— |v||$|2 |U|M_lav=2 (ir,ié,v)
+ [ Z 11# Z, d
/ £x 1( ] L(it,iE, v)? x81,1,j ¢V

o (WERY ol sen() o2y
__[y;,;w;( S ey Pl g

e s
~u=) [t (M ol g

V] [§7) [v[#Hm 347 ]2 -
+(m—1)/</,x‘ﬂ ( etz vl e dv.

Observe that ¥ is supported on an annulus. Therefore, we have as before |t| ~ 2!, €| ~ 2/ and
|v| = 272/§ on the support of me;v1(|v||€]?/8), and additionally also [v| ~ 272/ § on the support of
nie; ¥ ([v]1€]%/8). This last observation allows us to estimate the expression |v||€|?/§ appearing in the
first integral on the right-hand side by
ollER _ |

5~

As in Step 2, we obtain
|v|u—2+y 22j(s(m—2)—pu+2-y)
<

|Z(it,iE, v)| ™ §sm—D—u+2-yl(1=s)’

and, similarly,
3 A L] A L e '3
2@t iE V)2 | L3t iEv)| | LT, iE )|
|v|,U«—2+J/ 22j(s(m—2)—u+2—y)
<
YLl ig v)| Y §sm=D—ut2-yol(1=s)"

In light of these estimates, the expressions

vl [€]* sgn()[v|*~2FY sgn()[p| 2V urtm 3t
) ZLit,iE,v) Llit,iEv) L(it,iE, v)?
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extend by Theorem B.1 and Lemma B.4 to constant multipliers of order
22j(s(m—2)—p+2—-y)
§s(m—1)—p+2-yl(1-s)
on supports of n;¢; 1 (|v||€]2/8) and n;9;¥1(Jv||€|?/8), respectively. Hence, by the anisotropic trunca-
tion property, we obtain

3 n—1
‘ / S wl* v
Step 4: Conclusion. We aim to conclude by real interpolation. We set, for z > 0,
K )= if{l Gy + 200N A e L Ay e Lo iy = 7%+ AL}
By the above estimates we obtain

22j(s(m—2)—p+2-y)
8s(m—1)—u+2—y 2 (1—s

22j(s(m—2)—p+2-y)
8S(m D—jit+2— ),21(1 $) |||'U| gl]” AMTV -

Ly

) u—1+p
K(Z,fl,j)§ )(Hl |1 ngH//ZTV"'lH | yglll///Tv)+Z(2zj) ”f“fov

We now equilibrate the first and the second term on the right-hand side: we choose § > 0 such that

22j(s(m—2)—p+2-y) § \Hlte
§sm—D—pt2—yl(—s) (271) ;
that is,

§74c1Sd ™At = z5bqb,

witha :=s(m—1)—pu+2—y, b:=pu—1+p, c:=2"" and d := 272/, This yields
§ = Z_ﬁct}%dszi_bb ,
and further

(1—s5)b sb
§ % 1— Sd_a+s_za+bc atb a+b

Hence, with
a _sm—-1)—pu+2-—y
T a+b Csm—=1)+1—y+p

we obtain

—0 l (A=s)(u—1+p) —2 s(u—1+p) 1— _
K, fi,5) 27 50m Db =50 22 5= ([0 gollary + 110177 1 llary +1 /16 )

= 27 I (0| golly + 017 g1l + 1 f s )

Observe that 1 — 0+ 0/ =1—0+6(1 —p) = 1—06p, so that (th,L‘fx)goo = Lp > with
1 a+b sm—1)+1—-y+p

1—0p a(l—p)+b pu+(1—p)(s(m—1)+1-y)

Hence, we may take the supremum over z > 0 to obtain

111l e < 27 (o] ol + 1017 g1y + 1Sl s ) (4-8)

p:

Multiplying by 2/%:2/¥x and taking the supremum over j,[ € Z yields (4-4).
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If we assume additionally f € LY ., r # p, we choose for g € (min{ p, r}, max{p, r}) a corresponding
¥ € (0, 1) subject to 1/g = (1—8)/r +9/p. Then using (L . LI°)94 = L7 . together with (4-8),
we obtain
1 fiillee, S WAl pee
AT ~ ~
I 272 (1 gollary + 017 g1l + 1 g, ,)?

1,x,v

<27 I (0 Y gollary + I 1y 1SN+ 1S g ).

Multiplying by 2/%¥:2/%%x and taking the supremum over j, [ € Z yields (4-5).

Finally we note that if s = 1 and consequently x; = 0, then the partition of unity {7; };<7 in the Fourier
space connected to the time variable ¢ is not necessary. Hence, if we set o; = 0 whenever Lemma B.4 is
invoked and replace Theorem B.1 by its isotropic variant (see Remark B.3), we obtain

152g . S 27701 gollry + 07 g1 lry +1F e +17zz,).
which shows f € ZqBi'éé.
It remains to consider the case when f is not localized in v. We observe that for a smooth cut-off
function ¥ € C2°(R), the function (¢, x,v) — f(t, x,v)¥(v) =: f¥(t,x,v) is a solution to
L@ Ve 0) [V (L x0) = go (tx.v) +g) (1.x.v) + dugl (1.x.v) on R, xRY xRy,

where g(‘)/’ , g}/’/ and g‘lp are defined analogously. Hence, estimate (4-8) reads in this case

1AL pee <2712 (1" (6 + 81 )Ly + 11017 8Y Ny + 15V s )

Since |v|™Y g1 € 1y by assumption, there exists for ¢, | 0 a sequence r, 1 co such that

/ X<l Y grdvdx dr <ep
R,xRﬁva

for all n € N. For n € N and a smooth cut-off function ¥ € C>°(R) with ¥ = 1 on B;(0) and
supp ¥ C B»(0), we define ¥, via ¥, (v) := ¥ (v/rp). Hence v, is supported on r, < |v| < 2r, and
takes values in [0, 1/r,], so that we may estimate

oV Ly = [ WAl 7 dvdrar

Ry xRE xRy

= [t Ol dvdx
Ry xRS xRy

§/XrnS|v|s2rn|U|_ygl dv < gy.

Thus, taking the limit # — oo and using Fatou’s lemma, we obtain (4-8) also for general f. Multiplying
by 2/ 27%%x and taking the supremum over j,! € Z, we may conclude as before. O
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Lemma 4.4. Assume y € (—oo,1), me (1,00), w€[1,2—y), p€(0,1], B’ =1/p, and let f, go, g1,
and f be as in Lemma 4.2. Define

I—y+p u—1+p

, =0 = 4-9
ot (—p(—y) T i-y+p 9

pi=

If f € L}, p #r €[l,00], then for all ¢ € (min{p,r}, max{p,r}) we have fe Ll }}”f,g, where

¥ € (0, 1) is such that

1 1-9 9
q r p
Moreover,
IIfIILq e Sl gollary + lllvl™ yg1||///Tv+||f||LB +||/;||L§,X- (4-10)

Proof. By the same arguments as in the proof of Lemma 4.2, we may assume that f is localized in v. In
fact, the whole proof of Lemma 4.4 is similar to the one of Lemma 4.2, with the modification that here
we consider a microlocal decomposition of f depending on the size of v only and do not localize in the
Fourier space connected to the spatial variable x. More precisely, let {;};<z be a partition of unity on
R\ {0} as in Section 2. Then we define for / € Z

Jii= 9;1[771«%0(]’

where .Z; f;(z, x, v) is supported on frequencies |t| ~ 2! for I € Z. Similarly, we define the decompositions
go,; and g1 ; of go and g1, respectively. Moreover, we again consider a smooth function ¢ € C2°(R)
supported in B,(0) and set 1 := 1 — 9. For § > 0 to be specified later we write

ﬁ=wo(' ')ﬁwl(' ')ﬁ RO

Since f is a solution to (4-1), we have

</tx‘i/ﬂ(lr lé U)Jl‘JC,fl (t X, U) w1(|:;_|)(g0,l(tvxvv)+avgl,l(t7xvv))
and thus
fll(t X,v)
=7, W(| |);J (t,x,v)+ F, W(| |);ﬂ’ d (t,x,v)
t,x V1 g(lf l%‘ ) t,x80,] t,x V1 f(lf E ) t,x%&1,I\1, X,
=: £t x,0) + [ (1, x,0),

so that we arrive at the decomposition
fi =/f1|v|“_1 dv=/flo|v|“_1 dv+/fﬁ|v|ﬂ—1dv+/fl3|u|“—1dv
)

Again, we treat the three contributions separately.
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Step I: f°. Let [ € Z be arbitrary, fixed. Since |v| < § on the support of ¥o(|v|/§), using Minkowski’s
and Holder’s inequalities, we have
v
= [vo (5 it s
Lt,x

],
Y e
$/|wo|(7 o il do

<ot [ivol(5) g, o
Bo\h
so sty (fwol(5) @)

ST Sl
1,x,v

Step 2: f2. Let [ € Z be arbitrary, fixed. Since i <2 — y, we have on the support of n;¥(|v|/8) (so
that |t| ~ 2! and |v| = §)
|v|u—2+y |v|u—2+y Sn—2+y
<

26w~ el T2

By Lemma B.4 applied with ¢ = 0 and the isotropic variant of Theorem B.1 (see Remark B.3),
|v|#2%Y /| .2 (i1, i&, v)| acts as a constant multiplier of order §4~2F7 /2! on the support of n;y1(|v]/$).

Consequently
2 M—ld T | | | |M 2ty 1-y d
SR o (5 ) Zegay Pl o o
5/L 2+y

2!
Step 3: f3. Let | € Z be arbitrary, fixed. We observe (recall Z(it,i&, v) =it + [v|" 1£]?)

_ - [v[\sgn(v) [v[*!
/fl3|v|” ldv:—/ﬂ‘,’;wi(— 5 Z(c ik )yt,xgl,ldv

nw—2
G [ () S P

_ o\ [v[# 10, 2(it, i€, v)
F [ = Z, d
+/ ”xl/“(s Z(it, it v)? LxE1ECY

[v]') lv]| sgn(v)|v[#—2FY _
= / W]( 5 20T iE.D) Frx|v] Vg1 dv

lv]) sgn(v)|v[#2FY _
—(M—l)/«%xvf ( 20t it D) Frx|v] 7V g1, dv

o) [otu (M) g o
m — v U
1% AT

Ll

r.x

1-
vl*™ goll.ary -

N
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Observe that 1] is supported on an annulus. Therefore, we have as before || ~ 2! and |v| = § on the
support of ;Y1 (|v|/8), and additionally also |v| ~ & on the support of n;v{ (Jv|/§). This last observation
allows us to estimate the expression |v|/§ appearing in the first integral on the right-hand side by |v|/§ < 1.
As in Step 2, we obtain

|v|u—2+y - SH—2+y

lzGit i v)| ~ 28 7

and, similarly,
|U|M+m—3+y|%~|2 |v|u—2+y |v|m—1|%-|2 |v|u—2+y 8u—2+y
- < <
| L@t iEv)|> LGt ig )Lt iEv)| ™ [ LT, iE )] 2!

In light of these estimates, Lemma B.4 applied with o = 0 and the isotropic variant of Theorem B.1 (see
Remark B.3) show that the expressions

[vlsgn()[v[*7>*  sgn()[p[F T2 I g
§  ZLit,ikv) = Lt iEv) = Lt iEv)?

extend to constant multipliers of order §#~2%7 /2! on the supports of myi(Jv|/8) and n;yri(Jv]/6),
respectively. Hence, we obtain

e

Step 4. Conclusion. We aim to conclude by real interpolation. We set, for z > 0,

KG foy =it [y, +20 70 70 e Liw e Ly fi= 10+ A1)

Sh—2+ty
< l
L 2

o™ g1l -

By the above estimates we obtain
n—2+y
2!

We now equilibrate the first and the second term on the right-hand side: we choose § > 0 such that

- ) _ _ _
K(z fi) < (U101 2ol + 11017 g1 ) + 285742 f

Sh—2+y

— ZSM_1+p'
2! ’

that is,
1 l
$:=z T—vFp2 T-vFp,

Hence, with
_ 2
0:= intd
I-y+p
we obtain
— = _Ju=1+0 _ _
"K(z, ) S 27 S U0 goll g + MUl 81l + 1 s )

=274 (10" goll iy + 1017 g1llary +1f 18 ).

[N]
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As in Step 4 of the proof of Lemma 4.2 we use (Lt o Lﬂx)g o = L > with

- I—y+p
1-6p pu+(1—p)(1-y)

p =
to obtain
| fillpee <27 (101" gollary + 1017 g1 lary + 1 £ 115 ): @-11)

For g € (min{p, r}, max{p, r}) we choose a corresponding ¥ € (0, 1) subjectto 1/q = (1 —2)/r + 1/ p.
Then using (L} . L7°)9,q = L7 .. together with (4-11), we obtain

-9
I fillze <Al IIﬁlleoo

< ||f||z7l’z—“’”f(|||v|1—ygo||.mv + ol g1llay + 1 fllLes )°

r,x,v

<27 (0] gollary + 11017 g1llary + 1 llzge, +1712r )

t.x,v

Multiplying by 2% and taking the supremum over / € Z yields (4-10). (|

Corollary 4.5. Letm € (1,0), y € (—oo,m), p€[l,m+1—vy), f eL,xvﬂLé’ovaeasolutionto
(4-1), and let go, g1 and f be as in Lemma 4.2. Let q € (1, (m + 1 —y)/ 1) and define

. png—1 2

Kx.— —

qg m—y
If f € LY(R4+TY) N LY(R; LY (RY)), then f € LY(R; Wo~4(R%)) for all o € [0, &y). Furthermore,

17 o qwesay S 1017 8ol + N1 &1 llary + 1y azee  + 170t apopy. @12)

Proof. We recall the decomposition f; = .7 Lo i f introduced in the proof of Lemma 4.2. We argue
that it suffices to consider the case when fj = 0 for all j < 0. Indeed, the part f<:=3;_, f; can be
estimated in view of Bernstein’s lemma, see [Bahouri, Chemin, and Danchin 2011, Lemma 2.1], via

Lf<llzgqwoxay SIS Npapt-

We aim to control f in Z? Bqﬁ, K< where ¥ € (0, 1) is sufficiently large such that o, < ¥k, and then use
Lemma 2.3 to the effect of

||f||Lq(W"x 4y S ||f||Lq 19/<x ||f||z;1ggg’

where the last equality is apparent from the definition of the homogeneous and nonhomogeneous Chemin—
Lerner spaces and the fact that the low frequencies of f vanish. Thus, it remains to establish

171 z0 g S W0 Gollry + W0l g1 hary + 170 oz, F 0 00 - @13)

For pe (1,(m+1—y)/u), choose

_ (F-Dm—y)
1+ pm—pu—y)
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We claim that p is positive and well-defined: Since the numerator is positive due to p > 1 and m > y, it
remains to check that the denominator is positive. This is obvious for u <m —y. For u > m —y, we
observe that due to u <m + 1 —y we have

. m+4+1-—y 1

p< < ,

M nw+y—m

which implies 1 + p(m —pu —y) > 0. Moreover, p < (m+ 1 —y)/u can be rewritten as (p—1)(m—y) <
1+ p(m—p—vy),so that p € (0, 1). Hence, we may apply Lemma 4.2 with this choice of p and with
s = 1. One checks that in this case the integrability and differentiability exponents in (4-3) read

- up—1 2
p=p, k=0 Kkx=—F7———.
p m—=y
Choose p € (q,(m+1—y)/u) so that Ky < kx and define ¢ € (0, 1) through
1 v
—=1-9+—.
q p

We may choose p € (¢, (mm+1—y)/1) sufﬁciently small so that ¢ € (0, 1) is so large that o < 9kx < kx.
In view of (4-5) (with the space S ’9" B Sg (O KX)B replaced by LqBﬂKx) we obtain

—j® 1- - F
||fj||L;{x <2777 (o gollary + VI g1 lary + WAl Uy )

where we recall the notation f; =/ ﬁzx_l[gojt%cfﬂvw_l dv. If we multiply by 2/7%x and take the
supremum over j € Z, this yields

i . _
1/ ize gpex S M0l 0lary + M0 gl + 1 s 1S g -

By the estimate ||f||LB < ||f||L1 Lt ||f||Loo ,» this gives (4-13). O
Corollary 4.6. Let m € (1 ), Yy € ( 00, 1), f e Lt x,v VLTS be a solution to (4-1), and let go

and g1 be as in Lemma 4.2. Assume f € L} forallr €[1,m+1—y), where f(t,x):= [ f(t, x,v)dv.
Let p € 2—y,m+ 1—vy) and define

m+1l—y—p 1 . p—2+y 2
K¢ = = . Kx = = .
)4 m—1 )4 m—1
Then f € WO:P(R; Wo~P(R?)) for all o; € [0,%;) and o5 € [0,Rx). Furthermore, there is an r €
(p,m + 1 —1y) such that

| wor.sworsy < 1017 ollary + 1017 g1 lary + 1Sy opge + 170, (14)

Proof. As we need to pass from homogeneous spaces (the output of Lemmas 4.2 and 4.4) to a nonho-
mogeneous space, our strategy is to invoke Lemmas 2.5 and 2.4. The input to Lemma 2.5 requires four
pieces of information, namely control of f in L?(RE+1), Lp BUt Lp BG‘ and S g B Since the
control of f in L?(R4*1) is ensured by assumption, we concentrate on the other three contributions.
Note that the main difficulty lies in the condition that both the integrability exponent and the orders of
differentiability have to match exactly.
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Step I: f € Sg OOB . Letr € (p,m+ 1 —1y) to be chosen in Step 3. We claim that there exist functions
ke kx 1 (0,00) = (0, 00) with k¢ (g), kx(g) — 0 as ¢ — 0 such that it holds for all £ < 1
IIfllsgwooB S gollary + 01 1l + 1Lt azee  +1F1Ls s (4-15)

t.x,v t,x,v

where we have used the notation o; := k; —k;(¢) and oy := kx — kx (&).

We apply Lemma 4.2 with u =1, p=1—¢, and s := s € (0, 1), where s, is chosen so that the
integrability assertion in (4-3) reads p = p; this is possible for p close to 1 in view of Remark 4.3.
Moreover, we may choose ¥ € (0, 1) such that x; and k defined through (4-3) satisfy tk; = kK — k(&)
and Uk = Kx —kx (&) for some functions k; and ky as above. Then for 1 <go < p <gqi <m—+1—7y so
that

Lopgl L0, 0
q0 P 41 r 4

we obtain in view of (4-5) that

r -9 —j 1— — r
ifle S 272502 % ol oy + 117 gallry + 18+ 17101 s )

Li)e 5 =LY

t,x

for i = 0, 1, where we recall the notation f; ; := [ F i A m@j F1x f1dv. Since (LT

t,x°
for an appropriate 6 € (0, 1), we thus obtain

1l S 27752 2% (ol goll sy + W01 gty + 150 41 00y + 1702,
which after multiplying by 2/9¥12/%%x and taking the supremum over [, j € Z yields
171

By the estimate ||f||L£5¥ ST ”J;”L},x < ”f”L},x,u + [ fllLee, - this gives (4-15).
Step 2: f € Zf Bgfoo. In this step we establish

w0 g SN golary + 1017 gty +1f e +17 0 + 1 Iy, @16)

D
D.oco

1 g5 2 < WOl gollary + 1017 g1lry + 1702y, ozss, +1F s, 1D

Choose
_ (—Dm—y)
T4+ pm—1—y)

We claim that p is positive and well-defined: Since the numerator is positive due to p > 1 and m > y, it

remains to check that the denominator is positive. This is obvious for y <m —1. For y >m — 1, we

observe that |

p<m+1—y< ———,
P + v I4+y—m

which implies 1 + p(m — 1 —y) > 0. Moreover, p < m + 1 —y can be rewritten as (p — 1)(m —y) <
1+ p(m—1—y), so that p € (0, 1). Hence, we may apply Lemma 4.2 with this choice of p and with

s = 1. One checks that in this case the integrability and differentiability exponents in (4-3) read

p—1 2
p=pP k=0, kx=———"—.
p m-—y



OPTIMAL REGULARITY IN TIME AND SPACE FOR THE POROUS MEDIUM EQUATION 2465
We observe that x = Ky and hence we find & € (0, 1) such that 9k, = iy —kx (¢). The same interpolation
argument as in Step 1 gives now the estimate (4-17).

Step 3: f_ € Zszgfoo. In this step we show that there is some 7 € (p,m + 1 —y) such that

+If s - (4-18)

r,x,v

_ . B
1A gz goe S0 8ollary + 017 g1lary + 1/ L
p.o0o

We apply Lemma 4.4 with © = 1 and p = 1. In this case, (4-9) reads p =2—y and k; = 1/(2—y). Since
p >2—1y, we have k; < k;. Hence, we can choose ¥ € (0, 1) such that ¥x; = k; — k(¢). In particular,

&_m+l—y p2—y 2—)/

Y < -
Kt D _1 p
so that
_e-p(-9)
2—y—9p

is well-defined. Since r is increasing in ¥ due to p > 2—y, we see that r € (p,m + 1 —y). We have
1/p=(0-=9)/r +9/p, and hence Lemma 4.4 gives estimate (4-18).

Step 4: Conclusion. Since f € L{)’ . by assumption, Lemma 2.5 combined with Lemma 2.4 yields the
result. =

Corollary 4.7. Let m € (1,00), y € (—oo,m), and let f € Lt x.v VL7 be a solution to (4-1). Let go
and g1 be as in Lemma 4.2 and assume additionally

|go|(t, x,v) € M7y (R, x R X Ry).

Assume p € 2—y,m+1—y)N(1,m+ 1 —y) and define
m+l—y—p 1 _ . p—2+y 2

Kt = =

p m—1 ' p m—1

If f e L"(R4FTY) N LYR; LP(RY)) for all r € [l,m + 1 —y), where f(t,x) = [ f(t,x,v)dv, and
if [Jo™"=1fdve LYRI*Y), then f € WP (R, WoxP(RY)) for all o, € [0,%;) and oy € [0, Kx).
Furthermore, there isanr € (p,m + 1 —y) such that

1 Iweeswor.ry S 180z, + 11017 gollary + 10177 g1llary
( )

; -1
+HfﬂL;XUmLf;v+—WfHL“£nL?x+-W/|mm fdv (4-19)
t,x
Proof. 1t suffices to adapt Step 3 of the proof of Corollary 4.6, that is, the control of f in Lp Bp oo
Step 3: f € L,IC’BthO. In this step we show that there is some r € (p, m + 1 — y) such that
1/ 1zz or S llgollary + o1~ gollary + 11017 g1llary
Vg a1 a4 [0 o] a0

t.x
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We split f into three contributions

[ =7 W@ F f + F (1= Yo(0))(1 = ¢o(§) Frx |+ F;x (1 =Y0(2))po(§) Frx f
= f1+ 17+
The low time-frequency part f! can be estimated in view of Lemma 2.3 and Bernstein’s lemma, see
[Bahouri, Chemin, and Danchin 2011, Lemma 2.1], via

r1 r1l r1 r
17220 S0 zzme S0 yorsenezy S IF 1y pee (4-21)

Next, we apply Lemma 4.2 with u = 1, sufficiently large p € (0,1) and sufficiently small s €
((y = 1)/(m — 1), 1] so that (4-3) implies p < p and k; > k;. Hence, we can choose ¥ € (0, 1)
such that k; > Uk > iy — k¢ (). In particular, in light of Remark 4.3
- l—v_5
1‘}<ﬁ= m y_»p p—f)<£ ifl—p<Kl,

ke m+p—y—po+p(l—p)(y—m)p p

so that r = pp(1 —19)/(p — ¥ p) is well-defined. Since r is increasing in ¥ due to p > p, we see that
re(p,m+1—y). Wehave 1/p =(1—19)/r +19/p, and hence Lemma 4.2 gives

i -~ ) i
170522 g S W01 gollary + 10 gallary + 15 Ney , orss,, + 17N,

Thus, since 2 is supported only on 7;¢ ; for nonnegative /, j € Z, Lemmas 2.3 and 2.4 show, in view of
the definition of the homogeneous and nonhomogeneous Besov spaces and o; < 9k, as well as 0 < Piy,

F20 o F2 < | £2 _ — I £ .
1720z 0 =1 72zgpm S 177 0s0e 5 =17 Isse s
Thus,

. _ ) _
1720257 S I Sollary + W0l g1llary + Sy, ores,, + 1 e, @22)

It remains to estimate the contribution of 3. For [ € Z, we introduce fl3 =% Yn1(x).%: f3. Since
fl3 = 0 for / < 0, we may concentrate on the case [ = 0. Observe that fl3 solves the equation

1 €17 1¢o($) 1¢o(§')

fl3 =-—m|v|"" lf,x.—rll(f)¢0(§)f/txf + Zx F1.x80,1 + T x

s

Tt xavgl l-
Integrating in v, we obtain

; 1 IEP _

= —M/ "y = ; ﬂl(f)¢0(§)erf dv +fftx—¢o(é)ftx/go,z,j dv.

Since |£]? acts as a constant multiplier on the support of ¢¢ and ! acts as a constant multiplier of
order 2~/ on the support of 7y, it follows by Bernstein’s lemma

3 11-L1), 7 -1 —
17205, 520D 52 (| [ ot o

+ ||g0||u¢/rv)-
L},
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Since p > 2 — vy, we have

- m+1l—-y—p 1 1
0 <Ky = = —-
p m—1 p

In view of [ = 0 this yields

17215 sz—"’f(H [ o™= f dv

+ IIgoll.mv)-
Lix

Multiplying by 2/ and taking the supremum over / € Z, we conclude

12N gz S| [ ™" f do
xbp 00

+ ”gO”//{TV . (4-23)
Ll

t,x

Collecting (4-21), (4-22) and (4-23), we arrive at (4-20). O

5. Application to porous medium equations

In this section, we provide proofs of our main results by applying the averaging lemmas obtained in the
previous section to entropy solutions to (1-1).

Proof of Theorem 1.2. We first argue that we have u € Lj , for all s € [I,m — 1 + p). Since T' < oo,
Theorem A.2 gives

lullz S sup u@lpy < lwoll s + ST . (5-1)
t€l0,T] )
so that we may concentrate on s > 1. Let f be the kinetic function corresponding to # and solving (1-8).
In order to apply Corollary 4.5 with # = 1 and o, = 0, we need to extend (1-8) to all times 7 € R, which
can be achieved by multiplication with a smooth cut-off function ¢ € Cc°° (0, T) with 0 < ¢ < 1. Hence,
we set g0 := 8y—y(,x)S +0:r¢f and g1 :=¢q. Let y :=2—p, so that s € (1, m + 1 —y). From (4-12) we
obtain

—1 —2
loullzy < Mol gollary + 110 g1lary +lef Izt npse . +loulls azsrt

-1 -2
S gollary + 1101°P g 1llary + 11/ 11

r.x,v

Ao+ osup flu@)| 1.
LAY refo0,T] *

o0

We note that since trivially /" € L7%

(DAY

1,.x.,v

with norm bounded by 1, estimate (5-1) gives

npse + sup u@l S el +1+ sup Ju@lpy < luolly + 1Sl +1.
o t€[0,T] ’ t€[0,T] ’

Next, we check that [v|°~1go € .#7y. Indeed, we observe that (p — 1)p’ := p, and hence, applying
Lemma A.3,

11017 gollary = 11017 Gomue,S + 30Nty < Ml Slps + 19e0lul?ls
Sl g ISPl + 18elul?ly

< lluollf, + IISIIZ;)X +10cplul®llLr -
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Utilizing Lemma A.3 once more to the effect of

1012 g1llary = 1101°2q ) ary < w7, + ||S||,‘i¢'x,
we obtain
louley , < oy o + 1S5, 0 +l0rolul®lly +1.
We may set ¢, () = ¥ (nt) — ¥ (nt —T/2), where y € C°(R) with 0 < ¢ < 1, suppy C (0, 00),
Y(t)=1fort >T/2and ||0;¥| 1 = 1. For n — oo, @, converges to 1o 7] in the supremum norm,

while d;¢p is a smooth approximation of 8¢;—oy — d¢s=7}. Therefore, |[@nul/Ls — [u|rs  and by an
application of Lemma A.3

8egnlul? ), = Il = [ul(T) Iy S lwoll7, +1SI7, -

so that u € L5([0, T] x R?) and
lullz; o < Mol qpe +1SI7) e +1 (5-2)

(i) We apply Corollary 4.5 once more. Let f, ¢, go, g1 and y be as above. Then, in particular
pe(l,m+1—y)/un). From (4-12) we obtain
lou™ L oy S W01 gollary + 110177 g1llary + 17Ny e, + 1My apops.

The first three contributions on the right-hand side are estimated as above. For the last contribution, we
note 1 < u < pu and thus

ey rpot S I pny = el e < ll gy + lull )

S Csup Nu@ gy +llullpre)” < sup u@I, + llully pu +1.
t€l0,77] ’ t€f0,T] x 1.x

Furthermore, (5-1) together with (5-2) applied with s = pu € (1, m — 1 + p) shows

u " < wo wp
sup_ (Ol + Ielffp+ 1% WollfF g +USIY oy 41

0
tefo,T rxNLy x

Hence, arguing as above by taking the limit ¢, — 1o, 7], we obtain ultl e LP(R; Wox-P(R?)) and (1-4).

(i) The proof is similar to the first part, but we use Corollary 4.6 instead of Corollary 4.5. Again we
localize in time by multiplying with a smooth cut-off function ¢ € C2°(0, T)) with 0 < ¢ < 1 and set go
and g, as before. Choose y :=2—p, so that p € (2—y,m + 1 —y). From (4-14) in Corollary 4.6 we
obtain

1_ —
lpliworoqwox.ry S 1017 gollary + M7 &1llary +1F 1L aree  +llzr

where r € (p,m — 1 4+ p). The terms involving gg, g1 and f can be estimated as above, while the
L} -norm of u can be estimated by (5-2). Choosing ¢y, as above, we hence infer that g,u is bounded in
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WP (0, T; Wo~P(R?)) and

sup | @nttllworrwox.r) S oll7y 0 + 117, + 1

1
neN LinL TxNL? .

Since gnu — ulpg, 7] in the sense of distributions, we obtain the result by the weak lower semicontinuity
of the norm in W9-P(0, T; W°xP (R%)). O

Proof of Corollary 1.3. (i) Let ox € [0,2u/m). We apply Theorem 1.2(i) with p = m/u for sufficiently
small n € (1, p] so that
- up —1 2 _2p m—1

p m—=24+4n mm—-2+n

and observe that for all g € [1, p] we have the embedding L? (0, T; W2 (R%)) c L9(0, T; Wox4(5)).

X

(ii) For s > 0 we have, with p =s(m—1)+ 1 € (1, m],

1—s m—p 1 2s p—1 2
= = s Ky = = .
s(m—1)+1 p m—1 7 sm—1)+1 p m—1

Kt

Hence, in this case the assertion follows by an application of Theorem 1.2(ii) with sufficiently small
n € (1, p] such that p > p and

combined with the embedding
WP (0, T; WP (R)) c Wo1(0,T; Wox1(0)),

If s = 0 and o; € [0, 1), we may choose so > 0 such that

l—S()

<— = ,
ot som—1)+1 t(s0)
and the result follows by the embedding
WIC[(S()),S()(m—l)-‘rI(O’ T, LSo(m—1)+l (ﬁ)) C WO’;,I (0’ T, Ll(ﬁ)) 0

Proof of Theorem 1.1. The proof is similar to that of Theorem 1.2(ii), but we discriminate between small
and large velocity contributions to the kinetic function. Let f be the kinetic function corresponding to u
and solving (1-8). We extend again to all times # € R by multiplying with a smooth cut-off function
¢ € C2°(0,T) with 0 < ¢ < 1. Further, we split f =: f~+ f~ and ¢ =:¢~ + ¢ into a small-velocity
and a large-velocity part by multiplying with a smooth cut-off function ¢ respectively ¥ := 1 — g
in v. This gives rise to the two equations

At (@f =) —m|v|™" T Ax(@f =) = @V¥08ypmu(t.)S + 0v(9q ™) — pqdy o + drof .
At (@f ™) —mv|™ T Ax(@f ™) = 0V 18pmur.)S + 0v(9q7) + qdy o + dr0f .

Integrating /= and f~ in v, we obtain a decomposition of u = u~ +u~.
The proof proceeds in several steps: In first the three steps, we argue that u € L*(0, T'; LS (R¢)) for all
se[l,m+2/d)ifd =2ands €[l,m+ 1) if d = 1. With this additional bound, we can conclude the
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higher-order estimates in the last three steps of the proof. We only detail the proof for d = 2, the case

d =1 being similar.
Step I: In this step we establish for p € (m,md /(d —2)) the bound
e=lpmre < luollp + ISHy  +1.

Set g0 := @V0Sy—u(t,x)S + 0:0f = —0qdvo, g1 := g =, and

d d ( 2)
Oy =———€(0,—).
m p m

Consequently, we may choose y € (0, 1) so large that
|: m—1 2 )
O—x € 0, - |-
m m-—y

From Corollary 4.5 applied with © = 1 and ¢ = m we obtain

(5-3)

1_ —
lou=llpween S 1017 gollary + N1 &1 llary + 10 <l aree  + 10wl apmpy

1— -
ST gollary + I g1llary + 11 11 L2

t.x,v

t€[0,T]

We note that since trivially f = € L??x,v

ﬂL?fDx.v+ sup ||u(t)||L)1(

with norm bounded by 1 we have by Theorem A.2

1 orse + sup Ju@lpy S lllyy +1+ sup Ju@)lgy S luolly + IS0 +1.

LXVETELYY e]0,T] t€0,T]

Next, we check that |v|!™7go € .#ry. Indeed, since |v|'™7 can be estimated by a constant on the

supports of ¥r¢ and 9,19, we may apply Lemma A.4 to the effect of
111" goll.ary = 1101 Y (©¥08u=uir,0)S + :0f = = 9qdu o) l.arry
SISl + Ndeglulll s+ lgduvoll.ary
< locplull s+ luolly +11SHp
Utilizing Lemma A.4 once more to the effect of
177 g1llary SHVITVG" iy < ol + 1S ILs -

we obtain by Sobolev embedding

loullprig < Nou=lpmwesm < luolly + 1eplulllyy + 1S, +1.

With the same construction ¢, — 1[o,7] as in the proof of Theorem 1.2, this gives (5-3).
Step 2: Next, we investigate u~ and establish for € (1, m) and

S dm—-1)=2(n—1)

the bound

™o S ol + 1SNy + 1.

(5-4)

(5-5)
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Set go := @V18y=u(r,x)S + 0:0f ~ + ©qdyyo and g1 := ¢g~. Choose y € (1, m) sufficiently small, so
that n € (1,m + 1 — y), and define

-1 2 -1 2
S ek S (o, "__).
n m-—1 n m—y

We apply Corollary 4.5 with u = 1 and ¢ = 7, which gives
lou I awesn S 101 gollary + 1017 g1l ary + 1070t arse  +lou™ln arr

1_ —
Sl golery + 1 1llary #1712y ozss, + 502 @l
" T t€|0,

The terms involving f and u are estimated as in Step 1. Further, since [v|!™” can be estimated by a
constant on the support of 11 and dy ¢, we have by Lemma A.4

1017 gollary = 101" @V 18umun)S + 0:0f ™ +9q3u¥0) sy
SUSHL +deglully +1ad0¥oll ey
S 10cplulllzy -+ olly + 1Sl
and, again due to Lemma A.4,
ol ™ g1lary S M0IT7a7 Lary S ol +1SIL -
Since n* = nd/(d — oxn), we have by Sobolev embedding W¢*" C LZ*, and hence
low™ Nl < low™ lgwesr S oy +19selullly + 1Sl +1.
With the same construction ¢, — 1o 7] as before, this yields (5-5).

Step 3: In this step, we show that for s € [1,m +2/d) we have
ey, < Nuolly +1S0,s +1. (5-6)

Observe that it suffices to show the assertion for s > m, since u € L1 (0, T; LY (R%)) is already established

by Theorem A.2.
m . md
= —c|m,——).
P m+1—s d-2

Define
For ¢ € (0,1), it holds [L°LL, L™ LRy = LF? LT with

1 v 1 s
—=— and —=1-0+—.
Py m qs p
Choosing
9i=—L  c0.1),
mp+p—m

we obtain py = gy = s, and hence by (5-3) and Theorem A.2

=Ny, S uSlpeepy +=lpmpe < luollpy + 1SNy +1. (5-7)
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Next, we define
_ nd
d—2(n—1)/(m—-1)

and observe that for 9 € (0, 1), it holds [L®LL, L7L" |5 = LP? L% with

*

_sdim—1)+2

=2 el d
U d(m_1)+2€(,m) and 7

1 % 1 %
—=— and —=1-9%+—.
Po n qy
Choosing
dim—1
9 nd(m—1) €(0,1),

T pdm—D+2(m—1)
we obtain py = gy = s, and hence by (5-5) and Theorem A.2

e ls S e lpgepy + 11l e < Tuollpy + 181+ 1. (5-8)

LTLY
Combining (5-7) and (5-8), we obtain (5-6).

Step 4: In this step we argue that
lou=llwor.rawor.ry S 10r@lullipy + luolly + IS +1.

Indeed, we choose y € (0, 1) so large that

-2+ 2
<P |4
P m—1

Ox

andm+1—y <m+2/d. Then we apply Corollary 4.7 with go := @V¥08y—yt,x)S + 0:0f =~ —@qdyp o,
g1:=@q~ and p = p. We obtain by (4-19) some r € (p,m + 1 — y) such that

1_ —
lou=llwor.rqwox.ry S lgoll.ary + 101 gollary + VI g1llry
+||f||L1 NL®

1,x.v t.x.,v

m
+ ”u”L}Lfc’ﬂL?x + |l |ul ”L},x'

The first four terms on the right-hand side can be estimated as in Step 1 (indeed, we did not use the
coefficient |v|!~7 in the estimate of gg) via

120l ary HIV1 780l ary + 1101781 Ly +1F U e SHOeglullly +luoll s +1SI +1.
while the last two terms are estimated in light of r <m + 1 —y <m + 2/d through (5-6) as
el zgzoncy, + Moy < elp ary, +lulfp, S ol + IS +1.
Step 5: In this step we establish
llou™ llwor.rqwov.ry S 19elulliyy  + luolly'y + IS +1. (5-9)

Assume first p < m. Choose y € (1,m) so small that p € (1, m + 1 —y) and
m+l—-y—p 1
p m—1

oy <
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and apply Corollary 4.7 with go 1= V18, —yu(r,x)S +0:9f ~ +9qdy Vo, g1:=¢q~ and p = p. Estimate
(4-19) gives

1— —
lou=llwor.rwox.ry S 180llary + 11017 gollary + 110177 g1 lLairy

m
+ ||f||L},x,vﬂL(l>,ox.v + ||u||L}L)’?ﬂL;"’x + [[u] “L},x'
The first four terms on the right-hand side are estimated as in Step 2 via
1— —
120l s +I0 1 780l ary + 1101781 Ly +1F U proe SHOeglullly +luolly +1SI +1.
while the last two terms are estimated through (5-6) as
e ggzoncy, + Ml lzy S lely ary, + Il S ol +ISI +1.

Hence, we have shown (5-9) in the case p € (1,m). If p = m, we choose pg € (1, m) sufficiently large
such that for

po—1 2
kx(po) := —
po m—1
it holds
d
Kx(pO) ——— >0x— —.
m
We observe that for
m—po 1
kt(po) := —
po m—1

it holds
1 1
kt(po) — — >0 — —
Po m

due to pg < m (indeed, we have necessarily o; = 0). Choosing sufficiently large o (po) < kx(po) and
0¢(po) < k¢ (po), we conclude by Sobolev embedding

lou~ ”L?”(Wf»’f”") < llou™ || WOt (P0).Po (WX (P0).P0)
S Wl -+ ol + IS +1.

which is (5-9) in the case p = m.
Step 6: Conclusion. With the same construction ¢, — 1,7} as in the proof of Theorem 1.2, Steps 4
and 5 combine to

supl@pttllwor.o(wox.ry S suplgnu~|lwor.p(wox.ry + suplgnut” [|wor.o(wox )
neN neN neN

< ||“0||z1)1€ + ||S||z1} LT L.

Since gnu — u I[p, 7 in the sense of distributions, we obtain (1-2) by the weak lower semicontinuity of the
norm in W2 (0, T; W~P(R?)). Estimate (1-3) follows analogously to the proof of Corollary 1.3(ii). O
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Appendix A: Kinetic solutions

In this section we recall some details of the concept of entropy/kinetic solutions and their well-posedness
for partial differential equations of the type

dru 4 div A(u) = div(b(u)Vu) + S(t.x) on (0, T) x RY AD)
u(0) =ug on [R{fg,

where
up € L'®RY), SeLl(0.T]xRY), T =0,
a:=A € C(R;:RY) NCY R\ {0}; RY), (A-2)

Here, S iXd denotes the space of symmetric, nonnegative definite matrices. For b = (b); j—1,..q4 €S _'{_Xd
we seto =b1/2, that s, bi,j = Zizl 0; k Ok, j - For alocally bounded function 5 : R — S_‘f_Xd we let B; i be
such that B} , (v) = 0; & (v). Similarly, for Y € C2(Ry) we let B; be such that (8,)' (v) = ¥ ()0 (v).
The corresponding kinetic form of (A-1) reads, see [Chen and Perthame 2003],
L0, Vy,v) f(t,x,v) =0¢ f +a()-Vy f —div(b(v)Vy )
= dyq + S(t, X)Su(t,x)=v(v)7

where g € .4 and ¢ is identified with the symbol
Lt iEv):=it+a)-iE—(b)EE). (A-3)

We will use the terms kinetic and entropy solution synonymously. From [Chen and Perthame 2003] we
recall the definition of entropy/kinetic solutions to (A-1).

Definition A.1. We say that u € C([0, T']; L' (R%)) is an entropy solution to (A-1) if the corresponding
kinetic function f satisfies:
(i) For any nonnegative € 2(R), k=1,...,d,
d
> Bl ) € L2(0. T] x RY).

i=1
(i1) For any two nonnegative functions ¥1,¥» € 2(R), k =1,...,d,

d d

Vi@, x)) Y 05 B2 (. x) =Y 05 L (. x)  ae.
i=1 i=1

(iii) There are nonnegative measures m,n € .# T such that, in the sense of distributions,

At f +a)-Vx f—div(b(v)Vx f) = 0y(m +n) + Sy—y@,x)S on (0,T) x Rz X Ry,
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where 7 is defined by

/w(v)n(z,x,v) dv = Z(Z By, B, (ult, x)))

k=1 i=1
for any ¥ € 2(R) with ¢ = 0.
(iv) We have
/(m +n)dxdr < pu(v) € LE(R),

where Lg° is the space of L°°-functions vanishing for [v| — oo.

The well-posedness of entropy solutions to (A-1) follows along the same lines as [Chen and Perthame
2003]. In this form, it can be found in [Gess 2020].

Theorem A.2. Letug € LY (R%) and S € L! ([0, T] x R%). Then there is a unique entropy solution u to
(A-1) satisfying u € C([0, T]; LY(R?)). For two entropy solutions u*, u? with initial conditions u(l), u%

and forcing S, S% we have

sup [|u’ (1) =u (0| L1 ey < llug =gl ey + 1S = Sl 21 (o, 71xme)-
t€[0,T]
Furthermore, the following a priori estimate was given in Lemma 2.3 in [Gess 2020].

Lemma A.3. Let u be the unique entropy solution to (A-1) with ug € (L' N LZ_V)([Ri) and S €
(LYNLZ7)([0,T] x [Rd)for some y € (—o0, 1). Then, there is a constant C = C(T, g) = 0 such that

sup (o) y+(1—V)// W[7g dvdxdr < C(Juol; ).

t€[0,T]

+ 18123

Lz” Lzy

In the case of L! initial data a different proof for the existence of singular moments of the kinetic
measure ¢ is needed.

Lemma A.4. Let u be the unique entropy solution to (A-1) with ug € L! ([Rz) and S € L([0, T] x [R{g).

Then, the map
T
vr—>/ / q(r,x,v)dxdr
0 JrRY

is continuous and, for all vy € Ry, we have

T T
/0 /Rﬁ q(r,x,vg)dxdr < /Rg (sgn(vo)(uo —vo))+ dx + /0 /Rgf sgn_ (sgn(vo) (u — v9))S dx dr

T
S/ |u0|dx+// |S|dx dr. (A-4)
RY o Jrd

Proof. In the proof, we use the short-hand notation g(v) := fOT fRE‘C’ g(r,x,v)dx dr for a generic g :
(r,x,v) — g(r, x,v). We first argue that g has left and right limits. Indeed, by a standard approximation
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argument, the kinetic formulation yields, for every n € C2°(Ry),

/n/(idvz—/ 77( fdx|(7;)dv—|—n(u)S
v Ry Rr¢

:_/ ,7( fdx|(7;)dv—|—/ N 1y<uS dv. (A-5)
Ry R? Ry

Since v > fpa f(r,x,v)dx|f is in L'(Ry), this implies § — 1y<yS € WLH(R,). Since Iy<uS €
B Vioc (Ry), this shows g € BVjo.(Ry) and thus the existence of left and right limits.

Next we claim that (A-5) continues to holds for all n € C*°(R,) with " € C2°(R,). For R > 0 let
@R € CZ°(Ry) be such that pg(v) = 1 for [v] < R, supppr C [-(R+ 1), R+ 1] and |pr| + k| S 1.
Defining ng := neg, we have by (A-5)

/I% (n/(pR‘i"?‘/’}%)q_dv:_/ nR( Rddel(j;) dU+7]R(U)S

Since ng is uniformly bounded in R, ng — n locally uniformly, v ng f(r,x,v) dx|g isin L'(Ry)
and S € L1([0, T] x Rg ), we may take the limit R — oo on the right-hand side by dominated convergence.

Again by dominated convergence the contribution from the term 1’gg to the left-hand side converges,

1
loc

ng' vanishes for R — oo, since both 7 and ¢, are bounded, supp ¢ C [-(R + 1), —R]U[R, R + 1]
and ¢ € L§°(Ry) by Definition A.1(iv).

since ' has compact support and § € BVoc(Ry) C L, (R,). Moreover, the contribution from the term

We are now in the position to conclude. Assume first vg € Ry. Let ¢4 € C°(Ry) with ¢+ = 0,
suppp+ C [0, 1], suppop— C [-1,0], va ¢+ dv = 1 and define ¢% (v) = e ¢+ (¢7'v) for & > 0.
Moreover let 7%, be such that (%) (v) = ¢4 (v — vo) and (7%.)(vo) = 0. Observe that (7%.)" = Sy=y,
and 7 (v) — sgn (v —vg) as &€ \ 0 independent of the choice of £. Choosing now 7 := 7_in (A-5)
and using dominated convergence to take the limit & \ 0, we obtain

T
g(vot) =—/ (u—vo)+ dxlg—i-/ / sgny (4 —vo)S dx dr
RY o JrY

T
< (up —vo)+ dx+// sgn, (u —vg)S dxdr.
RY (U

In particular g(vo—) = g(vo+), so that g is continuous. The case vy € R_ is treated analogously
replacing the conditions ¢4 = 0 and va ¢+ dv=1Dby ¢4 <0and va ¢+ dv = —1, respectively, so that
n% (v) — sgn, (v — o) is replaced by 1% (v) — sgn (—(v — vo)). O

Appendix B: Fourier multipliers

In this section, we provide some Fourier multiplier results well-adapted to our averaging lemma,
Lemma 4.2. We recall the definition of R+ and of the functions 7; and @; given in Section 2, and
define 7j; :==m;—; +n; + 1141 and @ 1= ;1 +@; +¢;j+1. We observe 7121 ) =17 and @(27 +) = .
Moreover, 7; and ¢; are identically unity on the support of 1; and ¢;, respectively.
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Theorem B.1. Let k =2+ 2[1 +d/2]. Let m : R2+! — C be k-times differentiable and such that for all
a = (a7, ag) € Ng X Ng with |a| < k there is a constant Cy such that for all (z, §) € R4+1

102705 m(z. §)| < Colr| 7 |£] 712!, (B-1)

Then there is a constant C > 0, depending only on the constants Cy,, such that for any p € [1, 00| and all
l,j €Z,we have
In1¢jmll.ar < C; (B-2)

i.e., j¢;m (more precisely the mapping (v, §) — 7;(v)@; (§)m(t, §)) extends to an L‘Zx-multiplier with
a norm independent of | and j. Furthermore, this mapping extends to an .y -multiplier with the same

norm bound.

Proof. Since || - ||.4» < | - ||_41, it suffices to estimate the L' multiplier norm of 7j;¢;m in order to obtain
(B-2). Since multiplier norms are invariant under dilation and since ||m|| ,1 is equal to the total mass of
Z 7 m, see [Bergh and Lofstrom 1976, Theorem 6.1.2], we have

I71@imll1 = lliio@omi,jll g1 = 1 7; g fioGomu ;i1 .
where m; ;(7,§) := m(2't,27€). Let M := [1 + d/2]. We observe
(1+ ) (U + 5™ F L liogomy, )t x)

=g / (id — ) (id — Ap)M (/"X ) fio (v) o (£)m(2' ¢, 27 ) dE de
R[XR%

py / FEFIE (i 92)(1d — Ag)™ (o (1) G0 ()m (2 .27 £)) dE dr
R, xR4

= Y cyap2frallPl / e”f+"xfa‘;‘rﬁo(f)a‘gwo(s)aéragém(zlf, 2/€) de dr,
ar+pr<2 Ro xR
log [+1Be|<2M

where ¢4 and cq4 4 g are constants that do not depend on / and j. On suppijo X supp go we have
|8§r agém(2lr, 2/8)| < Cﬂ2_l‘3t 2~ /1B¢l and hence we obtain

(1421 + [x))M |2 Hiogomy, ;1(t. x)] < c.

Since 2M > d, it follows ||§t_,; [ﬁogﬁoml’j]HL; < C, which yields (B-2). In particular, 7;¢;m is an
L'-multiplier with a norm bound independent of / and J, and as such extends to a multiplier on .Z7y

with the same norm bound. O

Remark B.2. In Theorem B.1, the assumptions on the differentiability of 72 may be relaxed: Indeed, the
proof shows that it suffices to assume that m is a continuous function such that 937 m, Bg)‘m and 9%° E)?xm
exist for all o = (o, ag) with @z < 2 and |og| < 2[1 + d /2], and that (B-1) holds for these choices of a.

Remark B.3. Clearly, Theorem B.1 has an isotropic variant; see [Bahouri, Chemin, and Danchin 2011,
Lemma 2.2]. More precisely, a simple adaptation of the proof shows the following: Let k = 2[1 + d/2].
Let m : R? \ {0} — C be k-times differentiable and such that for all & € Ng with |a| < k there is a
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constant C,, such that for all § € R? \ {0} we have |3%m (§)| < Ce|£|™'%!. Then there is a constant C > 0,
depending only on the constants Cy such that for any p € [1,00] and all j € Z we have ||¢;m| ,» < C.
Again, ¢;m extends to an .y -multiplier (in §) with the same norm bound.

Lemma B.4. Let £ be defined as in (4-2) and fix a = (ag,ag) € No x Ng. Then we have for all
(1,€,v) € R4 X R the estimate

1 1
9% 9% —or g —loe |
§ 2(itigv)|”™ |$(it,i$,v)||r| £
Proof. The proof rests on the identity
B |y|(m—1)Np
T S
.Z(lr i&,v) 5 f(lr,lé,v)HNﬁ

where cg are constants, Ng := (|ag| + |B])/2, and the sum runs over those 8 € Ng with |B| < |ag| such
that |og| + | B| is even. The identity can be proven easily by induction on the order of ag. From this and
0:Z(it,i€,v) =1, it immediately follows

gﬂ |v|(’" 1)Ng

op n%E
a d Z'f(zr l%’, )1+ar+N5 ’

§ .f(zr i&v)| ™

which in view of
|Bl],|(m—1)Ng [Bl],|(m—1)Ng
€7 v] _ &7l

= g]7CNs=IBD) — (g leel
2wV e

(lo|m=1]g[2)Ns

~

and
1 e[
| L (it ik v)er
yields the assertion. O
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